

<

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

NPSNET: HIERARCHICAL DATA STRUCTURES
FOR REAL-TIME THREE-DIMENSIONAL

VISUAL SIMULATION

by

Randall Lee Mackey

September 1991

Thesis Co-Advisors: Michael J. Zyda

David R. Pratt

Approved for public release; distribution is unlimited.

RITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION UNCLASSIFIED

SECURI TY CLASSIFICATION AUTHORITY

1b. RESTRICT IVE MARK INGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution is unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

DECLASSiFICATION/dOWNgRADINg schedule

ERFORMING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION
mputer Science Dept.

val Postgraduate School

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

6b. OFFICE SYMBOL
(it applicable)

cs

ADDRESS (City, State, and ZIP Code)

mterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

NAME OF FUNdINgVSPONSORINO
ORGANIZATION

6b OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERSADDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

TITLE (Include Security Classification) NPSNET: HIERARCHICAL DATA STRUCTURES FOR REAL-TIME
THREE-DIMENSIONAL VISUAL SIMULATION (U)

PERSONAL AUTHOR(S)
Mackey, Randall Lee

TYPE OF REPORT .

Master s Thesis
13b. TIME COVERED
FROM 1 1 /90 to 09/91

1$ PAGE COUNT

91
14. DATE OF REPORT (Year, Month, Day)

September 1991
supplementary notation" The views expressed in this thesis are those of the author and do not reflect the

icial policy or position of the Department of Defense or the United States Government.

COSATI CODES

ELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Computer Graphics, Simulators, Hierarchical Data Structures, Digital

Terrain Data

ABSTRACT (Continue on reverse if necessary and identify by block number)

NPSNET is a low-cost visual simulation system designed and constructed at the Naval Postgraduate School.

'SNET uses digital terrain data and renders scenes involving vehicles, aircraft, cultural features, and natural

itures in real-time. The implementation of a terrain paging algorithm in NPSNET is discussed. Terrain paging

pands the terrain area available for simulation and overcomes the limits of main memory size. Hierarchical data

uctures commonly used in visual simulation systems are surveyed. The generation of a multi-resolution terrain

:aset and the implementation of a hierarchical data structure are explained. The multi-resolution dataset is created

generating lower resolution descriptions of polygons from the original data. The hierarchical data structure used

NPSNET, based on quadtrees, provides a means to attenuate the resolution of terrain over distance and cull those

rtions of terrain outside of the user's field of view.

DISTRIBUTION/AVAILABILITY OF ABSTRACT
| UNCLASSIFIED/UNLIMITED fj SAME AS RPT. Q DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

"SK. NAME OF R
chael J.Z>

ESPONSIBLE INDIVIDUAL
yda

22b. TELEPHONE <7nc/ucte Area Code)
(408) 646-2305

E SYMBOL

FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

NPSNET: HIERARCHICAL DATA STRUCTURES
FOR REAL-TIME THREE-DIMENSIONAL

VISUAL SIMULATION

by

Randall Lee Mackey

Captain, United States Army
B.S., United States Military Academy, 1981

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

ABSTRACT

NPSNET is a low-cost visual simulation system designed and constructed at the

Naval Postgraduate School. NPSNET uses digital terrain data and renders scenes involving

vehicles, aircraft, cultural features, and natural features in real-time. The implementation

of a terrain paging algorithm in NPSNET is discussed. Terrain paging expands the terrain

area available for simulation and overcomes the limits of main memory size. Hierarchical

data structures commonly used in visual simulation systems are surveyed. The generation

of a multi-resolution terrain dataset and the implementation of a hierarchical data structure

are explained. The multi-resolution dataset is created by generating lower resolution

descriptions of polygons from the original data. The hierarchical data structure used in

NPSNET, based on quadtrees, provides a means to attenuate the resolution of terrain over

distance and cull those portions of terrain outside of the user's field of view.

in

&/

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. FOCUS 1

1. Expanding the Terrain Area for Simulation 2

2. Reducing Polygon Flow 2

C. SUMMARY OF CHAPTERS 4

II. HISTORY OF REAL-TIME VISUAL SIMULATORS AT NPS 5

A. FOGM MISSILE SIMULATOR 5

1. Overview 5

2. Terrain Paging 7

3. Polygon Culling 7

B. VEH VEHICLE SIMULATOR 7

1. Overview 7

2. Terrain Paging 7

3. Polygon culling 8

C. MPS MOVING PLATFORM SIMULATORS 9

1. Overview 9

2. Terrain Paging 10

3. Multiple Resolution 10

4. Polygon Culling 13

D. CCWF COMMAND AND CONTROL WORKSTATION
OF THE FUTURE 13

1. Overview 13

IV

2. Terrain Paging 14

3. Polygon Culling 14

4. Multiple Resolution 14

E. NPS AUTONOMOUS UNDERWATER VEHICLE SIMULATOR 15

1. Overview 15

2. Terrain Paging 16

3. Polygon Culling 16

4. Multiple Resolution 16

IE. NPSNET 20

A. TERRAIN DATASET 20

B. FEATURES OF NPSNET 22

1. Hardware 22

2. Networking 23

3. Platform and Feature Icons 23

4. Collision Detection 23

5. Semiautomated Forces 23

6. Scripting 23

7. Texturing 24

8. Environmental Effects and Lighting 24

9. Temporal Effects 24

IV. TERRAIN PAGING IN NPSNET 25

A. DATASET AND MEMORY SIZE 25

B. DATASET PREPROCESSING 25

C. ACTIVE AREA SIZE 26

D. ARRAY INDEXING 27

E. TERRAIN PAGING ALGORITHM 28

V. HIERARCHICAL DATA STRUCTURES FOR VISUAL SIMULATORS30

A. QUADTREES 30

1. Quadtrees in Two-Dimensional Applications 31

2. Quadtrees in Two-and-One-Half-Dimensional Applications 34

B. OCTREES 38

C. BINARY SPACE PARTITIONING TREES 41

D. SELECTION OF A DATA STRUCTURE FOR NPSNET 43

VI. IMPLEMENTATION OF QUADTREES IN NPSNET 44

A. DATASET PREPROCESSING 44

1. Terrain Polygon Descriptions 44

2. Generating Lower Resolution Versions of the Terrain Surface 44

3. Selecting Terrain Color at Lower Resolution Levels 47

B. TERRAIN DATAFILES IN NPSNET 50

1. File Numbering Scheme 50

2. File Format 50

C. TERRAIN DATA STRUCTURE 51

1. Description 51

2. Accessing Data Files 53

VII. TERRAIN RENDERING IN NPSNET 54

A. TERRAIN POLYGON CULLING 54

B. DETERMINING TERRAIN RESOLUTION 56

C. DETERMINING REQUIRED FILL POLYGONS 60

VI

D. RENDERING TERRAIN SURFACE AND ROADS 63

E. RENDERING OBJECTS ON MULTI-RESOLUTION TERRAIN 63

Vin. SUMMARY 66

A. RESULTS 66

1. Terrain Paging 66

2. Multiple Resolution 66

B. CONCLUSIONS 69

C. SUGGESTIONS FOR FUTURE WORK 69

APPENDIX A: TERRAIN POLYGON ATTRIBUTES 71

APPENDIX B: TERRAIN DATAFILE FORMAT 73

LIST OF REFERENCES 79

INITIAL DISTRIBUTION LIST 81

vu

LIST OF FIGURES

Figure 1.1. Relationship Between Number of Polygons, Distance,

and Multiple Resolution 3

Figure 2.1. Six Triangles Sharing a Common Vertex 6

Figure 2.2. Field of View Versus Polygons Rendered in FOGM
and VEH Simulators 8

Figure 2.3. Multiple Resolution Regions in MPS 11

Figure 2.4. Multiple Resolution Regions in MPS with Different

Direction of View 11

Figure 2.5. Gap Created at Resolution Boundaries 12

Figure 2.6. Seam Stitching Technique used in AUV Simulator 17

Figure 2.7. Problem with Range of Resolutions Based on Rectangles 18

Figure 2.8. Multiple Resolution Areas in AUV Simulator 19

Figure 3.1. Scene from NPSNET 21

Figure 4.1. Active Area of Terrain in NPSNET 27

Figure 4.2. Boundaries for Terrain Paging in NPSNET 29

Figure 5.1. Quadtree Representation of 2D Image 32

Figure 5.2. Quadtree Containing Multiple Resolution Description of 2D Image 33

Figure 5.3 Quadtree Providing Spatial Index into 2 1/2 Dimensional Area 35

Figure 5.4. Multiple Resolution Descriptions of 2 1/2 Dimensional Surface 36

Figure 5.5. Full Quadtree Providing Spatial Index to Multiple Resolution

Description of a 2 1/2 Dimensional Surface 37

Figure 5.6. An Octree Numbering Scheme 38

Figure 5.7. Voxel Representation of a Solid Object 39

VUl

Figure 5.8. Octree Encoding of an Object Represented by Voxels 40

Figure 5.9. BSP Tree Representation of a Building Floor Plan 42

Figure 6.1. Multiple Resolution Terrain Description 45

Figure 6.2 Generating 1000 Meter Level of Resolution 46

Figure 6.3. Generating 500 Meter Level of Resolution 46

Figure 6.4. Algorithms for Generating Lower Resolution Terrain 48

Figure 6.5. Gap Created at Boundary of Resolution Levels 49

Figure 6.6. Terrain Datafile Numbering Scheme in NPSNET 50

Figure 6.7. Terrain Data Structure in NPSNET 52

Figure 7.1. Bounding Box Surrounding Field of View 55

Figure 7.2. 1000 Meter Squares Not Detected by Point-Polygon Intersection 56

Figure 7.3. Conceptual Two-Dimensional View of Terrain Active Area,

Field of View, and Terrain Rendered at Different Resolutions 57

Figure 7.4. Algorithm to Determine Which 1000 Meter Squares Are

Within the Field of View 58

Figure 7.5. Algorithm for Determining Which Quadtree Nodes Are Rendered 59

Figure 7.6. Determining Required Fill Polygons 61

Figure 7.7. Circle-Rectangle Intersection and Required Fill Polygons 62

Figure 7.8. Placing Objects on Multi-Resolution Terrain Using Only

High Resolution Elevations 64

Figure 7.9. Algorithm for Determining Elevation Within Square of Terrain 65

Figure 8.1. Comparison of Number of Polygons in Terrain Surface 67

Figure 8.2. Comparison of Frame Rates 68

i\

I. INTRODUCTION

A. MOTIVATION

Visual simulation systems in the form of vehicle, flight, and battlefield simulators

continue to become more widespread in the military. Simulators provide training at lower

cost and less risk than by other means. As technology improves, the quality, realism, and

effectiveness of visual simulation systems also improves.

One simulation system designed by the Defense Advanced Research Projects

Agency (DARPA) is Simulation Networking (SIMNET) (Thorpe, 1987). SIMNET is a

vehicle and battlefield simulation system designed to train vehicle crews for combat.

SIMNET nodes consist of visual displays and a mock-up of the crew compartment of a

particular vehicle. An effort to develop a low-cost system that will be able to interface with

SIMNET nodes over a network has been ongoing at the Naval Postgraduate School (NPS).

This system, NPSNET (Zyda and Pratt, 1991), is currently in a developmental stage and

consists of Silicon Graphics IRIS Workstations that communicate over an Ethernet local

area network.

B. FOCUS

Many factors determine the quality of a real-time 3D visual simulator. Two of these

are the fidelity of the actual scenes rendered and the frame rate of the simulator. High

fidelity scenes provide a greater degree of realism and enhance the effectiveness of a

simulator as a training device or visualization tool. High frame rates, in excess of 15 frame

per second, make motion in a simulator smooth and also improve interaction with the

simulator. These two factors are at odds with each other, rendering more detailed scenes

takes more time and hence slows the frame rate. Attempts to increase the frame rate allow

less time to render detailed scenes in individual frames. An approach to building a real-time

visual simulator that attempts to balance these two factors is to add as many features that

enhance realism, while still keeping the frame rate above the threshold at which the human

eye is able to detect individual frames.

Speed and efficiency are the primary considerations in producing code for a visual

simulator. Designers must choose data structures and algorithms that support efficient

code. Specifically this work focuses on two main goals pertaining to NPSNET. The first

goal is to expand the terrain area used in the simulation and the second is to reduce polygon

flow while rendering terrain scenes.

1. Expanding the Terrain Area for Simulation

The first goal involves allowing the simulator to use all of the terrain data

available and not limit the simulation to some small area, even though data for a larger area

is available. Since memory size is limited, having all of the data in main memory is not

feasible; therefore, paging terrain data through some sort of dynamic algorithm is required.

Early developmental versions of NPSNET limited the simulation to an eight by eight

kilometer area, even though data was available for a 50 by 50 kilometer area. Previous

simulators developed at the Naval Postgraduate School do not implement dynamic terrain

paging or force the user to switch from a three dimensional display to a two dimensional

display in order to move to a new active area.

2. Reducing Polygon Flow

The second goal concerns the implementation of a hierarchical data structure

that supports rapid culling of polygons not within the field of view and provides multiple

resolutions of terrain. Both of these benefits assist in reducing the number of polygons

composing each individual frame. The relation between the number of polygons in an

individual frame and the frame rate is simple—the fewer the number of polygons the faster

the frame rate. Representing terrain and objects farther from the viewer with fewer

polygons (lower resolution) reduces the total number of polygons in the scene. Figure 1.1

(Jurewicz, 1990, p. 14) shows the relationship between distance, the number of polygons,

and multiple resolution. This type of representation provides another benefit; since terrain

and objects at a distance are represented with fewer polygons, it is more difficult to discern

the true form of these items. This models the effect of viewing distant objects in the real

world.

U
g

O
W
CO

RESOLUTION LEVELS:

FOUR
THREE
TWO
ONE

RESOLUTION
BOUNDARIES

RANGE FROM VIEWPOINT

Figure 1.1. Relationship Between Number of Polygons, Distance, and Multiple

Resolution

C. SUMMARY OF CHAPTERS

Chapter II of this thesis examines previous simulators developed at the Naval

Postgraduate School and focuses on data structures and implementations of multiple

resolution. Attempts to expand the simulation area to the entire set of data available are

discussed in the systems to which this pertains. Chapter in is an overview of NPSNET and

provides background on the capabilities of the system. Chapter IV discusses the

implementation of terrain paging in NPSNET.

Chapter V is an overview of hierarchical data structures commonly used in computer

graphics. These include quadtrees, octrees, and binary space partitioning trees. Chapter VI

focuses on the implementation of the hierarchical data structure chosen for NPSNET—one

based on quadtrees. Chapter VII discusses terrain rendering in NPSNET, with emphasis on

how the hierarchical data structure supports efficient scene rendering. Chapter VIII is a

summary of results and conclusions, and provides suggestions for future work in these

areas.

Two appendices are provided. Appendix A details the attributes which describe

terrain in the dataset used by NPSNET. Appendix B explains the format of the terrain data

files.

II. HISTORY OF REAL-TIME VISUAL SIMULATORS AT NPS

Real-time interactive 3D graphics is the focus of the Graphics and Video

Laboratory at the Naval Postgraduate School. Over the last five years, students and faculty

have produced a series of real-time visual simulators. Simulators improved in quality as the

graphics workstations available increased in capabilities and processing power. In order to

understand the approaches taken in NPSNET, these previous simulators need to be

discussed. In looking at these systems the focus is on how terrain paging, multiple

resolution, and polygon culling were accomplished.

A. FOGM MISSILE SIMULATOR

1. Overview

The Fiber Optically Guided Missile (FOGM) simulator (Smith and Streyle,

1987) was the first major simulator effort at the Naval Postgraduate School. The simulator

allows the user to see a three dimensional view from a user-controlled missile as it flies over

a fixed ten by ten kilometer area. The user is able to target, track, and destroy vehicles

present in the simulator. The user selects a ten by ten kilometer active area from a larger 35

by 35 kilometer area when the simulation begins. The simulator uses a special elevation

dataset for Ft. Hunter Liggett, California. The data points for this dataset are every 12.5

meters apart, while normal Defense Mapping Agency Digital Terrain Elevation Data

(DMA DTED) Level 1 datasets only contain data points every 3 arc seconds

(approximately every 100 meters) (Defense Mapping Agency, 1986, p. 1). Use of all the

data points in the dataset is not feasible due to the number of polygons created, so only

every sixth data point is used. This effectively makes the resolution of the data for the

simulator one point every 75 meters. The dataset also contains vegetation height data at

each data point, but this data is not used. The scenes in the simulator contain no natural

objects or cultural features. The simulator does contain other vehicles, but these vehicles

are not under the user's control. The FOGM simulator was initially designed for a Silicon

Graphics, Inc. IRIS 3120 workstation. This workstation does not have hardware support for

simultaneous use of double buffering and z-buffering (for hidden surface elimination), so

the Painter's Algorithm is used for hidden surface removal.

The coordinates of each vertex of the polygons composing the terrain skin are stored

explicitly in an array. When the user selects a ten by ten kilometer active area, explicit

polygon descriptions are built from the dataset. This causes some elevation points to be

replicated up to six times, once for each of the six triangles that share a vertex as shown in

Figure 2.1. The color of the terrain for each 75 meter square is also stored in a

corresponding array.

Figure 2.1. Six Triangles Sharing a Common Vertex

2. Terrain Paging

The FOGM simulator does not use any type of terrain paging and the user is

restricted to the ten by ten kilometer area chosen even though data is available for a larger

35 by 35 kilometer area. The user can explicitly change the active area of the simulator by

exiting to a high level menu and choosing a new ten by ten kilometer active area.

3. Polygon Culling

The FOGM simulator performs polygon culling by selecting the rectangular

area within the active area of the simulator that encompasses the field of view. This means

that some polygons not within the field of view are still rendered as shown in Figure 2.2.

B. VEH VEHICLE SIMULATOR

1. Overview

The VEH vehicle simulator (Oliver and Stahl, 1987) was developed from the

FOGM simulator and contains many of the same features. The VEH simulator allows the

user to maneuver a vehicle over terrain in real-time. The dataset and selection of a ten by

ten kilometer active area are the same as in the FOGM simulator. Like the FOGM

simulator, the coordinates of the vertices of each polygon composing the terrain skin are

stored explicitly in an array. A polygonal description of the terrain is built from the dataset

just as in the FOGM simulator.

2. Terrain Paging

Like the FOGM simulator, the VEH simulator makes no use of terrain paging.

The user is confined to the ten by ten kilometer active area selected from the larger 35 by

35 kilometer dataset. Changing the active area of the simulator has to be done explicitly.

^^yyyyyy}yyyyyyyyyyyyyjt.

/ .•" 5

qryyyyj r: ...••'" J
1

[;::
""-•.. J
I.J i

"jU-
ssssysssss/yyA

Polygons
rendered

inFOGM

Location

of Viewer

- Field of
view

Polygons
rendered

inVEH

Figure 2.2. Field of View Versus Polygons Rendered in FOGM and VEH
Simulators

3. Polygon culling

The culling of polygons outside the field of view is improved in VEH. The

VEH simulator culls polygons outside the field of view in order to limit the number of

polygons rendered in each frame. Polygons are only rendered if they pass a check against

the slope of the lines delineating the left and right limits of the field of view. The 360 degree

field of view is divided into octants, so there are eight different cases which determine how

the array containing the terrain data is processed. This is an effective means for polygon

culling; however, all terrain within the field of view from the user's location to the edge of

the active area is rendered. Figure 2.2 shows a comparison of the terrain rendered in the

FOGM simulator and in VEH.

C. MPS MOVING PLATFORM SIMULATORS

1. Overview

The MPS Moving Platform Simulators were developed over three generations:

MPS (Fichten and Jennings 1988), MPS II (Winn and Strong, 1989), and MPS III

(Cheeseman, 1990). The second and third generations of this simulator are modifications

and improvements of the original MPS simulator . The MPS simulator allows the user to

drive or fly platforms over three dimensional terrain. The simulator allows the user to select

a ten by ten kilometer active area from a larger dataset. The simulator can use one of two

datasets: a standard DMA DTED Level 1 datafile describing approximately a 120 by 120

kilometer area or the special higher resolution dataset used by the FOGM and VEH

simulators that describes a 35 by 35 kilometer area. MPS allows the user to vary lighting

parameters to simulate the changes in sunlight throughout the day as well as seasonal

changes due to the relative positions of the earth and sun.

The MPS II simulator is the next generation in this family of simulators. MPS

II uses only the special high resolution terrain dataset and can not access standard DMA

DTED Level 1 data. The MPS II simulator implements a method to vary the intervals for

the multiple resolutions of terrain and can display terrain using data points at 12.5, 25, 50,

75, and 100 meter intervals. MPS II uses mesh drawing primitives to render terrain, rather

than explicitly rendering each polygon. MPS II also implements an intervisibility display

to determine the visibility over a line-of-sight between two points.

MPS III attempts to combine the best features of MPS and MPS II. MPS III

allows the user to access either DMA DTED Level 1 datasets or special high resolution

datasets. This simulator also allows the user to choose whether to render terrain using the

mesh primitives or to use polygon rendering primitives.

2. Terrain Paging

Like their predecessors, the MPS simulators do not use any type of terrain

paging. Changing the active area of the simulator has to be done explicitly by exiting to a

high-level menu and choosing a new ten by ten kilometer active area.

3. Multiple Resolution

MPS is the first simulator developed at the Naval Postgraduate School to use

multiple resolution of terrain. MPS displays terrain at three different resolutions. The user

can select to render all terrain at the one resolution or select a multiple resolution option. In

the multiple resolution mode, 100 meter squares are displayed near the viewer, 200 meter

squares are displayed for 2000 meters, and 400 meter squares are displayed to the edge of

the active area. These squares are all composed of two triangles. The method used by MPS

to determine which areas to draw at each resolution is simple, but not very effective. The

algorithm used works well when the direction of view is close to 0, 90, 180, or 270 degrees,

but not well at other angles. The algorithm is too closely tied to the rectangular structure of

the array and the range of each level of resolution is not independent of the direction of view

as show in Figures 2.3 and 2.4.

10

Low
Resolution

Medium
'Resolution

High
Resolution

, Viewpoint

Figure 2.3. Multiple Resolution Regions in MPS

Low
Resolution

Medium
Resolution

Low
Resolution

.Viewpoint

Figure 2.4. Multiple Resolution Regions in MPS with Different Direction of View

11

When using polygon drawing primitives and multiple resolution in this way,

gaps can develop in the terrain skin at the boundaries of polygons of different resolutions

as show in Figure 2.5. In MPS, these gaps are filled by additional polygons of the same

material color and using the same normal as the adjacent polygon of lower resolution.

Low
esolution

Polygon

High
Resolution

Polygons

Figure 2.5. Gap Created at Resolution Boundaries

MPS does not use multiple resolutions of vehicles placed on the terrain surface.

Additionally, vehicles are always rendered as if they were on terrain rendered at the 100

meter resolution. No adjustments are made for the fact that the characteristics of the

underlying terrain can change when terrain is rendered at progressively lower resolutions.

MPS II uses mesh drawing primitives, but approaches multiple resolution

using the same algorithms as MPS. Multiple resolution is accomplished using mesh

drawing primitives by simply not using every data point. Using every other point provides

a lower level of resolution, while using every fourth point provides yet a lower level, and

so on. The problem of gaps at the boundaries of different resolutions is handled in the same

12

way as in MPS, but note this is done in conjunction with terrain rendered using mesh

primitives. MPS III simply offers a choice between the methods used by MPS and MPS II.

4. Polygon Culling

The MPS simulator culls polygons outside the field of view in order to limit the

number of polygons rendered in each frame. First the point of view is offset in order to

ensure enough terrain is rendered near the edge of the field of view. A bounding box is

established around the triangle composing the field of view at each resolution as shown in

Figures 2.3 and 2.4. Only polygons within this bounding box are rendered. This is an

effective means for polygon culling; however, some polygons outside the field of view are

still rendered and all terrain between the viewer's location and the edge of the active area

is rendered.

MPS II and MPS III use the same culling algorithms as MPS. The algorithm

used works while rendering terrain as polygons or as a mesh.

D. CCWF COMMAND AND CONTROL WORKSTATION

1. Overview

The CCWF simulator (Weeks and Phillips, 1989) is a tool designed to assist a

tactical commander by providing a three-dimensional view of his immediate area of

operation and a two-dimensional view of the underwater terrain directly beneath his vessel.

The simulator displays surface and subsurface ships. The simulator is networked, allowing

users on different workstations to maneuver different ships simultaneously. The simulator

uses standard DMA DTED Level 1 datasets for an area of Japan. The designers assumed a

point spacing of 100 yards effectively making each data set describe a 60 by 60 nautical

mile area. This assumption holds for data cells near the equator. The user can place vessels

anywhere within the 60 by 60 nautical mile area by zooming in to any particular five by

13

five nautical mile area and placing the vessels as he desires. No natural features or cultural

features are placed on the terrain.

CCWF allows the user to choose whether terrain is rendered using polygon or

mesh drawing primitives. If the user chooses the polygon drawing primitives, the terrain is

drawn as a checkerboard of colors to provide a sense of motion and assist in depth

perception.

2. Terrain Paging

CCWF provides a larger active area for simulation than previous simulators,

but does not perform true terrain paging. Only a five by five nautical mile area is displayed

in a two-dimensional situation map at a given time, but the data for an entire 60 by 60

kilometer area is in main memory. No additional terrain data is paged in when the vehicle

maneuvered by the user nears the edge of the active area.

3. Polygon Culling

CCWF effectively culls polygons outside the field of view using a unique

method. The designers of CCWF divided the field of view into 72 five degree sectors. The

slopes of the edges of the sectors are stored in a lookup table. These values are used to

determine which sectors to render. CCWF uses a default of 45 degrees for the field of view

and nine of these sectors are rendered in each frame for this field of view.

4. Multiple Resolution

Multiple resolution is implemented in CCWF by not using every data point in

the lower resolutions. Every point is used in high resolution, every other point in the next

resolution, and every fourth point in the next resolution. The boundaries of the resolutions

are fixed within each sector making up the field of view. This is an improvement over the

MPS family of simulators which use fixed boundaries within each of the four quadrants.

CCWF creates filler polygons to fill the gaps created at resolution boundaries

similar to the method used in the MPS simulators. These fill polygons are generated in real-

14

time from the data already in memory. Some problems with scene quality in the CCWF

simulator are visible when using fill polygons while rendering terrain as a mesh (Jurewicz,

1990, pg. 7).

E. NPS AUTONOMOUS UNDERWATER VEHICLE SIMULATOR

1. Overview

An ongoing, interdepartmental project at the Naval Postgraduate School has

been to develop an Autonomous Underwater Vehicle (AUV). The AUV simulator

(Jurewicz, 1990) models the prototype vehicle's dynamics and provides a simulator for the

AUV in a test environment or in open water. The test environment for the AUV is the Naval

Postgraduate School swimming pool and the AUV simulator's performance can be

compared against actual data gathered from tests of the AUV. The AUV simulator allows

the user to maneuver the AUV in the chosen environment by manipulating virtual control

devices on the screen. The control panels were developed using the NPS Panel Designer

(King and Prevatt, 1990). The open water terrain data for the simulator was obtained from

the Monterey Bay Research Institute and comprises a 22 by 26 nautical mile area of the bay.

The simulator renders terrain using mesh primitives and introduces some new approaches

to rendering terrain. The terrain can be textured with a digital image, providing a sense of

motion and depth perception on terrain rendered as a mesh. This is a significant

improvement over earlier simulators that use mesh drawing primitives, and provides a

different option than checkerboarded terrain to provide a sense of motion. Texturing

produces high quality scenes; however, it does affect system performance.

The AUV simulator does not place any natural or cultural features on the

terrain. The designer notes some problems with attempting to place objects on terrain that

is not rendered in the highest resolution (Jurewicz, 1990, pg. 27).

15

2. Terrain Paging

The AUV simulator does not utilize terrain paging. The Monterey Bay dataset

consists only of elevation values and the entire dataset is read into an array at the beginning

of the simulation. No facilities are provided for paging additional terrain once the edge of

the active area is reached.

3. Polygon Culling

The AUV simulator renders all terrain within a bounding box that encompasses

the field of view. This means that some polygons not in the field of view are rendered, but

the designer notes that the performance of the simulator is better using a simple "rough

clip" of the polygons not in the field of view, rather than performing additional computation

to discern which polygons are actually visible (Jurewicz, 1990, pg. 13). This method of

terrain culling works well in the AUV simulator because terrain is rendered as a mesh.

4. Multiple Resolution

The AUV simulator not only displays terrain at multiple resolutions, but allows

the user to vary parameters which determine how many resolutions of terrain are rendered

and how far out terrain is rendered. The simulator also has a dynamic mode in which these

parameters are automatically adjusted in order to keep the frame rate and the quality of the

terrain rendered within acceptable limits. For example, if the frame rate is above a certain

threshold the simulator will render more terrain at higher resolutions. If the frame rate falls

below a certain threshold, the boundaries of the different resolution levels will be adjusted

and more terrain will be rendered at lower resolution levels.

The AUV simulator approaches the problem of boundaries between resolution

levels in a new way. No fill polygons are generated at these boundaries; rather, the seams

are "stitched" together by selecting certain vertices to send to the mesh drawing routine as

shown in Figure 2.6. This provides a smooth transition between resolution levels.

16

Low^ Resolution

Terrain

Terrain^^ Stitch

High

^^ Resolution
^^ Terrain

Figure 2.6. Seam Stitching Technique used in AUV Simulator

The boundaries between resolution levels remain rectangular in nature. This

results in varying distances from the viewer to particular resolution boundaries depending

on the direction of view. This is depicted in Figure 2.7. Figure 2.8 shows an overhead view

of the active area of the AUV simulator rendered as a grid and the orientation of the

rectangular boundaries of the resolution areas is evident.

17

2121.3 meters

Viewpoint
1500 meters

Directions

of View

3000 meters

Low
Resolution

Boundary

High
Resolution

Boundary

Figure 2.7. Problem with Range of Resolutions Based on Rectangles

18

7

^̂j/j/j/j/j/j/j/j/j/j/j/,

' . «
i

1 i ^ ' i 1 ' ' is v.
'
' '' ' *jttBf **v9j¥i*n iXyi ' i 'X «>* '. ' ' V 1*^1 , ,* . . « .y _/ X /

7ZZ22ZZZZZZZ2

7^ ^9^9^v̂ ^

/ / /

Location of AUV

Figure 2.8. Multiple Resolution Areas in AUV Simulator

19

III. NPSNET

NPSNET is a real-time three-dimensional visual simulator. It is designed as a low-

cost node for SIMNET. The intent of NPSNET is to provide such a node using

commercially available graphics hardware and to communicate over a network to other

SIMNET nodes.

NPSNET allows the user to select and maneuver platforms over terrain. NPSNET

currently contains a wide selection of platforms including vehicles, aircraft, and ships. The

system is networked, allowing individuals to interact from different workstations. The

appropriate scene, relative to the vehicle being maneuvered, is displayed on each

workstation. The user can interact within the environment by maneuvering the selected

platform, firing munitions at other platforms, or simply exploring the "virtual" Fort Hunter

Liggett. Figure 3.1 shows a view from a vehicle in NPSNET.

A. TERRAIN DATASET

The primary concern of this effort is how the terrain dataset is used in NPSNET. The

use of actual terrain data in visual simulators is a relatively recent occurrence (Schachter,

1983, p. 138). The dataset used in the developmental version ofNPSNET consists of terrain

and feature data for a 50 by 50 kilometer area of Fort Hunter Liggett, California. BBN

Systems and Technologies provided the dataset. The dataset conforms to the SIMNET

Database Interchange Specification (SDIS) (Lang and Wever, 1990). SDIS has provisions

for more data than is used in NPSNET; not all features of SDIS are contained in the Fort

Hunter Liggett Release.

20

21

The dataset for Fort Hunter Liggett consists of information pertaining to the

polygons composing the terrain surface, soil types (sand, water, etc.), cover (trees, bushes,

etc.), natural features, man-made structures, temporal effects (munitions explosions),

networks (roads, waterways, powerlines, etc.), and vehicle descriptions. The resolution of

the terrain data is one point for every 125 meters. The terrain surface data consists of

explicit descriptions for the polygons composing the terrain surface; that is, each polygon

is described by a three-dimensional coordinate for each of its vertices. Note that this is

significantly different from a system that only uses elevation data, where the coordinate

location of each elevation can be derived from its relative location within the dataset. The

locations of different types of trees and bushes, as well as other features such as large rocks,

buildings, and roads, are also extracted from the dataset for use in NPSNET. BBN also

provided their Application Programmer's Interface and this is used to extract the data. This

is done off-line and the data is preprocessed before it is used in NPSNET. The way the data

is manipulated and stored for use in NPSNET is discussed in Chapters Four and Five.

B. FEATURES OF NPSNET

1. Hardware

Currently NPSNET is running on different models of Silicon Graphics IRIS

workstations within the NPS Graphics and Video Laboratory. These machines are a single

processor IRIS 4D/30, IRIS 4D/70GT ,and 4D/310VGX; a two processor IRIS 4D/

120GTX; and a four processor IRIS 4D/240VGX. These workstations are specifically

designed to support graphics applications and contain special hardware to perform

coordinate matrix transformations and clip polygons not within the field of view. Each

machine contains slightly different versions of graphics hardware as well as different

amounts of main memory.

22

2. Networking

All of the workstations running NPSNET can communicate over the NPS

Computer Science Department's Ethernet Local Area Network. The machines

communicate using a standardized message format. Users on different workstations can

attack each other, or conduct coordinated maneuvers to specific objectives, in real-time.

3. Platform and Feature Icons

NPSNET uses descriptions of platforms and features stored in the NPS Object

File Format (OFF) (Zyda, 1991a and 1991b). A set of tools have been developed at NPS to

support creation and editing of these icons. A set of procedures provides access to files

containing the icon descriptions and provides an interface to efficiendy render them.

4. Collision Detection

Collision detection takes several forms in NPSNET: collisions between

moving platforms, collisions between a platform and a fixed feature, and "collisions"

between a munition fired by one platform and another platform. Currently in NPSNET one

platform can fire a munition at another platform and destroy it. Detection of collisions can

be computationally expensive and this is an ongoing area of research.

5. Semiautomated Forces

Inclusion of Semiautomated Forces in NPSNET is also an ongoing area of

research. Currently some platforms can detect munitions fired from another vehicle and

respond accordingly. Armed platforms will return fire and unarmed platforms maneuver to

escape the incoming munitions. Semiautomated vehicles vary their direction of travel,

based on their current speed, versus simply traveling in a straight line.

6. Scripting

NPSNET has the capability to record and playback scripts of vehicle

movements. For example, one script contains vehicle movements for a coordinated

amphibious landing. Work has also been done on playing back scripts from other sources.

23

One successful endeavor involved playing back a script of vehicle movements generated

by JANUS, the Army's primary combat model.

7. Texturing

The IRIS VGX series provides texturing, a process in which a digital image is

overlaid on underlying polygons. Texturing is used in NPSNET to provide more realistic

terrain, and to provide a sense of motion and depth perception over that terrain. Texturing

is also used to provide more realistic features on the terrain.

8. Environmental Effects and Lighting

NPSNET is able to simulate environmental effects such as clouds, smoke and

haze. This effectively models the obscuration caused by the presence of these factors on a

battlefield. NPSNET also uses a lighting model to produce shading in scenes.

9. Temporal Effects

Temporal effects are those that occur over a period of time. Currently NPSNET

is able to model explosions as a temporal effect. On machines that support texturing, a

series of digital images is progressively overlaid onto polygons to create the temporal effect

of an explosion growing in intensity and then fading over a short period of time.

24

IV. TERRAIN PAGING IN NPSNET

A. DATASET AND MEMORY SIZE

The dataset used for the 50 by 50 kilometer area used in NPSNET contains 79

megabytes of data in binary format for the terrain polygon descriptions alone. This size

increases to 147 megabytes when three additional, lower resolution descriptions of the

same terrain are generated. Of the machines currently running NPSNET, the one with the

most main memory has only 64 megabytes. All of the data cannot be loaded into a data

structure at one time. If the simulator is to have all of this terrain available, a method is

needed to allow part of the data to be in memory at a time, and page terrain in and out of

main memory as it is needed.

B. DATASET PREPROCESSING

The original SDIS dataset stores 64 square kilometers of terrain data in one file.

These files are too large to use this as a basis for paging terrain; their granularity is too

coarse in terms of area and size of file. The one kilometer standard of the military "grid

square" and the 125 meter resolution of the dataset leads to dividing the terrain data into

files where one square kilometer of terrain data is stored in one file. This results in 2500

files, each file describing the terrain for one square kilometer of the 50 by 50 kilometer

dataset. Dividing up the data in this way facilitates paging one kilometer strips of terrain,

composed of one kilometer squares, in and out of memory in each of the four cardinal

directions.

In order to prepare the data, the dataset is processed off-line. Each square kilometer's

worth of data is initially stored in a corresponding text file. The file is subsequently

25

converted from text to binary format to facilitate the use of block reads for bringing the data

into a data structure. Storing the number of polygon descriptions at the head of the file

facilitates the allocation of memory for the data prior to it being read into memory (every

polygon description is the same size).

The implementation of a hierarchical data structure is separate from terrain paging

in this implementation. Different data structures could be used to describe the terrain. The

final form of the dataset used by NPSNET is 2500 binary files; each containing a multiple

resolution description of the terrain for one square kilometer, stored as a heap-sorted

quadtree. The form of the data structure in main memory is an array of quadtrees. The

implementation of the quadtree structure is discussed in Chapter VI.

C. ACTIVE AREA SIZE

Considerations for the memory sizes of the available workstations, frame rates, the

required field of view, and desired range of views suggest using a 16 by 16 kilometer active

area of terrain. This amount of terrain data will be in memory at any time and available for

rendering. Sixteen kilometers allows seven kilometers of terrain in opposite directions for

immediate rendering and one kilometer in each direction as a buffer to ensure terrain is

fully paged in before attempting to render it. This buffer zone is necessary because terrain

paging is done in parallel. On multiple processor machines the simulator does not wait for

additional terrain to be paged in, an updating process is unblocked and motion continues.

By coordinating the number of simultaneous updates with the size of the buffer zone, the

problem of attempting to access data that is not yet in memory is avoided. Figure 4. 1 depicts

the concept of a dynamic active area of terrain within the larger area for which data is

available.

26

D. ARRAY INDEXING

Initial developmental versions of the code to accomplish terrain paging in NPSNET

used a 16 by 16 array corresponding to one square kilometer areas of terrain. Each element

of the array contained a data structure of the terrain data for one square kilometer. The

location of the driven vehicle determined the current center of the active area of the terrain

and the values of the indices of this square of terrain were maintained. By using modulo 16

arithmetic, the elements of the array could be addressed appropriately. The expense of

modulo arithmetic became apparent and the data structures and the code were modified.

1

t

Field of

^^ View

Terrain
Area
T7,, , . ., 1 ;., „Extending
to 50
kilometers

^
1000 meter
square
serving as

center

\

— square

-i
1 ""

Dynamic
1 A In i 1/1to Dy to
kilometer

active area
-+ in main

memory

\
i

\
"en

o5
•air

Ok
iAj
iloi

•ea

net

ext

ers

enclinjj

\

N
^ 12

tX)X

00
CO

by
nta

12(

inii

X) meter bounding
ig driven vehicle

Figure 4.1. Active Area of Terrain in NPSNET

27

The current version uses a 50 by 50 array as the top level data structure, but only a

16 by 16 part of this array contains terrain data at any one time. The values of the indices

of the center one kilometer square of terrain are maintained as the notional center of the

active area of terrain. Before data for a strip of 16 square kilometers is paged in to the east,

the memory for the western 16 square kilometers is freed. This limits the amount of data in

memory at any one time. The terrain data files vary in size based upon the roads in each

area, but they average 15 kilobytes. This means approximately four megabytes of main

memory are needed for terrain data at any given time, compared to 147 megabytes for the

entire dataset.

E. TERRAIN PAGING ALGORITHM

When the simulator is initialized, data for a 16 by 16 kilometer area is loaded into

the appropriate elements of a 50 by 50 array. This 16 by 16 kilometer active area is centered

about the location of the vehicle the user is occupying. This eliminates the need for modulo

arithmetic in calculating array indices. If the driven vehicle reaches the bounding box in

any direction, memory space is freed in one direction and terrain is paged in the opposite

direction. The center square changes, and the notional box surrounding the driven vehicle

moves as shown in Figure 4.2.

The size of the box surrounding the driven vehicle relative to the basis by which the

terrain data is divided is important. In this case, the bounding box is 1200 by 1200 meters

and the data is divided on a 1000 meter basis. Use of a 1000 by 1000 meter square bounding

box presents the possibility of thrashing. The driven vehicle could continually move back

and forth across the bounding box. The edges of the new and old bounding box would

coincide; there would be no overlap between the two boxes. Use of a 1200 by 1200 meter

bounding box requires the driven vehicle to change directions and move 200 meters in the

opposite direction before the terrain just paged in would be deleted. This concept is

28

illustrated in Figure 4.2. A 200 meter overlap may not be enough in some cases where

vehicles or aircraft rapidly and continuously reverse directions, but the size of the bounding

box could be increased even more to increase the overlap distance between the bounding

boxes.

1000 meters
^ »

User's

Vehicle

Reaches
Bounding
Box

Bounding
Box
Surrounding
Driven

Vehicle

1200 meters.

rt\\\\\\\V

7Currem
Center-

Square

Kilometer

Next
Bounding
Box

«\\\\\\v

J

\\\\\\\vvv\\\\\\\\v

)Next
Center

Square

Kilometer

Figure 4.2. Boundaries for Terrain Paging in NPSNET

2^

V. HIERARCHICAL DATA STRUCTURES FOR VISUAL
SIMULATORS

The use of hierarchical data structures in computer graphics provides two main

benefits. The first is that they assist in quickly determining what is and isn't visible in a

particular view of the data. The second is that hierarchical data structures facilitate

implementing multiple resolution versions of data. Both of these benefits combine in

reducing the total number of polygons rendered in each individual frame, thereby allowing

a faster frame rate and improving the overall quality of the simulation.

A. QUADTREES

Quadtrees are a type of hierarchical data structure based on recursive subdivision of

an image or data. The general idea behind quadtrees is that each level of the tree provides

a more detailed description of an image or data. Nodes are either internal and have four

children or are terminal and have no children. Quadtrees were initially applied in the field

of computer graphics to implement hidden line and surface algorithms and as a way to store

pixel data for two-dimensional images (Samet, 1990a, pp. 10-15). They can be used to

reduce storage space for data or to provide multiple resolution versions of data.

Quadtrees can be implemented in number of ways. The most straightforward is a

pointer implementation, in which each node points to its own data and to its four children

(unless it is a terminal node). As with any tree based structure, quadtrees can also be

conveniently represented as a heap. In a heap-sorted quadtree, the offset from a parent to

its four children are 4n+ 1 , 4n+2, 4n+3, and 4n+4 where n is the level of the parent (the root

node is level 0). Quadtrees can also be represented as a collection of leaf nodes. Various

encoding techniques to describe the location of the nodes within the tree have been

30

developed. One of these involves the use of quaternary (base four) integers to record the

path from the root node to each other node (Gargantini, 1982, pp. 905-907). A number of

algorithms to support such operations as search, neighbor finding, and nearest node in

quadtrees have also been developed. These can be found in The Design and Analysis of

Spatial Data Structures (Samet, 1990b, pp. 57-1 10).

1. Quadtrees in Two-Dimensional Applications

Quadtrees are well suited for processing two-dimensional images since the

image can be described by a two-dimensional array of pixel data. The advantage of using

a quadtree for this type of application is that the quadtree can reduce the amount of memory

needed to store the image. A quadtree can effectively combine areas of an image in which

adjacent pixels are described by the same values as shown in Figure 5.1. In this type of

approach, where the goal is to reduce storage space, only the terminal nodes would contain

pixel data. Note that some nodes contain information for adjacent groups of pixels; these

groups contain a number of pixels that is a power of four.

The approach of using a quadtree to create multiple resolution version of an

image is slightly different. In this type of approach every node would contain data as shown

in Figure 5.2. This example shows a quadtree containing the description of an image in four

different resolution versions. More memory storage space is required for this multiple

resolution version of the image, but note that the quadtree is still able to take advantage of

areas of the image that only require descriptions less detailed than that provided by the

highest resolution. A full quadtree would contain data for all pixels up to the highest

resolution; again the internal nodes would be used to provide multiple resolution

descriptions of the image. A full quadtree representation would not reduce storage space

for the image data.

31

2 3

1

5 4

13
JjLH-

6 7
17 16

19
9 10

818

12 11

2 3 4 5 6 7 8

O Internal Node

Black Pixel(s)

White Pixel(s) 9 10 11 12 14 15 16 17

Figure 5.1. Quadtree Representation of 2D Image

32

Level 1

1

Level 2

1

2 3

5 4

13 6 7

19 18 8

2 3

1

5 4

13
1415 6 7
1716

19 18 $ 10
81211

Level 3

Level 4

Level 1

Level 2

Level 3

White pixel(s)

Black Pixel(s)

3 4 5 6 7 8

9 10 11 12 14 15 16 17

Figure 5.2. Quadtree Containing Multiple Resolution Description of 2D Image

33

2. Quadtrees in Two-and-One-Half-Dimensional Applications

Quadtrees can be extended from two-dimensional applications to applications

involving two-and-one-half-dimensional surfaces such as terrain. The nodes of the

quadtree provide a spatial index to polygonal descriptions for particular surface areas

(Samet, 1990a, p. 11). The data could also be in the form of surface patches for the

corresponding areas of terrain (Schachter, 1983, p. 112). Quadtrees in these types of

applications provide the same benefits as in two dimensional applications: they provide the

potential to reduce storage space and they provide multiple resolution descriptions of the

surface data.

Quadtrees provide the capability of describing two-and-one-half-dimensional

surface data only to the level of detail necessary to describe the surface. Adaptive

refinement (DeHaemer, 1990) is a method by which a surface is recursively described in

successively finer levels of detail until the description of the surface lies within a certain

tolerance. A quadtree supporting this type of description is shown in Figure 5.3. Note that

in this particular structure only the terminal nodes provide access to data; therefore, no

multiple resolution versions of the object are provided.

Another approach is to describe all areas of the surface to the highest resolution

possible, even if parts of the surface need not be described in higher detail. This produces

a full quadtree. Providing access to data at every node provides multiple resolution

descriptions of the surface. A surface in different levels of detail is shown in Figure 5.4. A

quadtree used to describe a surface in this manner is shown in Figure 5.5.

One implementation uses quadtrees to store digital elevation data (Air Force

Wright Laboratories, 1986). Quadtrees are used in this application to store the average

elevation value for an area corresponding to a node in the quadtree. A tolerance is used to

determine if elevation values need to be stored at the lower level (higher resolution) nodes

of the quadtree.

34

1

2 3

5 4

13

14 15

6 717 16

19 18

"9"
10

812 11

Overhead View of

2 1/2 Dimensional
Surface Area

O Internal node

Terminal node providing access

to polygon descriptions 9 10 11 12 14 15 16 17

Figure 5.3 Quadtree Providing Spatial Index into 2 1/2 Dimensional Area

35

Figure 5.4. Multiple Resolution Descriptions of 2 1/2 Dimensional Surface

36

1 2 5 6 17 18 21 22

Overhead View of

2 1/2 Dimensional
Surface Area

4 3 8 7 20 19 24 23

13 14 9 10 29 30 25 26

16 15 12 11 32 31 28 27

49 50 53 54 33 34 37 38

52 51 56 55 36 35 40 39

61 62 57 58 45 46 41 42

64 63 60 59 48 47 44 43

^^^ NE/ \ SE

//\\ D

LJ EJ U U Areas Outlined

21 22 23 24 Above in Bold

SW

Node providing access to

polygonal description of

surface

All internal nodes have

four children

Figure 5.5. Full Quadtree Providing Spatial Index to Multiple Resolution

Description of a 2 1/2 Dimensional Surface

37

B. OCTREES

Octrees are an extension of quadtrees and are used to store three-dimensional

volume data. In an octree each internal node has eight children and terminal nodes have no

children. An example of an octree and a node numbering scheme is shown in Figure 5.6.

An octree is developed by recursive decomposition of a three dimensional object; that is,

each octant can be further divided into its own component octants.

An octree can record which subvolumes or voxels (VOlume piXEL) are occupied

by an object. The octree description then provides an approximation of the object, the

accuracy determined by the resolution to which the object is decomposed. Using an octree

to record the voxels composing an object is shown in Figures 5.7 and 5.8. Note how an

octree used in this manner records the solid nature of an object.

Figure 5.6. An Octree Numbering Scheme

38

Octrees can also provide a spatial index into three-dimensional data surface. Each

node would provide access to the polygons in the particular area of three-space associated

with the node. In this scheme not all children of a node may contain data. Like quadtrees,

octrees can be used to provide multiple resolution descriptions of a three dimensional

object. This applies to both octrees describing the voxels composing a solid and to octrees

containing polygonal descriptions for a three dimensional surface.

Figure 5.7. Voxel Representation of a Solid Object

39

^ ^ 4^
^

1 5

7

2 6

/ /

K/
H/

Numbering
Scheme

3D Object

Octree Representation

Filled voxel

LJ Empty voxel

Figure 5.8. Octree Encoding of an Object Represented by Voxels

40

C. BINARY SPACE PARTITIONING TREES

Binary Space Partitioning Trees (BSP Trees) recursively divide an object or space

using dividing planes (Fuchs, Kedem, and Naylor, 1980). While the octree effectively does

this based on a regular pattern, the dividing planes used in BSP trees may be arbitrary

planes in three-space. Figure 5.9 shows a BSP tree representation of an object in two

dimensions using dividing lines. In this example, the dividing lines are still perpendicular

or parallel, but this does not have to be the case. The extension to three dimensional objects

and dividing planes in three-space is straightforward.

The use of BSP trees in architectural applications is an area of active research (Airey,

1990). The floors and walls of a building serve as ready made dividing planes used to

partition the space of the building. A Potentially Visible Set (PVS) of polygons can be

calculated and associated with each cell created by the partitioning (Airey, 1990, p. 40).

This translates into what a viewer could see if he was in a particular room, including parts

of other rooms visible through doors or windows. Careful selection of which planes to use

in dividing the data can effect the compactness and efficiency of the partitioning (Airey,

1990,pp.l6-20).

The partitioning can also be used to divide the data so that all of it need not be loaded

into memory at the same time. For example, in walking through a building, a viewer would

move between rooms often and between floors infrequently. Data pertaining to the building

could be paged in and out based on the floors of the building. Perhaps only enough memory

is available to have data pertaining to three floors in memory and available for rendering at

any one time. In this case the data pertaining to the floor the user is on, and to the floors

above and below could be in memory. As the user moves up a floor, the data pertaining to

the lowest floor is no longer needed and data pertaining to a new floor at a higher level

could now occupy that memory space.

41

Figure 5.9. BSP Tree Representation of a Building Floor Plan

42

D. SELECTION OF A DATA STRUCTURE FOR NPSNET

A quadtree structure is chosen for implementation in NPSNET over other data

structure for several reasons. The nature of the terrain data leads to using a data structure

that can take advantage of the regularity of the data points. Nature does not provide terrain

features that can serve as convenient dividing planes for partitioning data based on some

type of BSP Tree. Octrees are normally associated with three-dimensional applications, but

NPSNET is only concerned with the terrain surface and is a two-and-one-half-dimensional

application. A quadtree can provide a spatial index into the data and also requires less in

the terms storage requirements than an equivalent octree representation.

43

VI. IMPLEMENTATION OF QUADTREES IN NPSNET

A. DATASET PREPROCESSING

In order to implement quadtrees in NPSNET the dataset is preprocessed. The dataset

used in NPSNET provides a description of the polygons that comprise the underlying

terrain surface based on data points every 125 meters. Due to the considerations for paging

terrain in and out of memory, separate files were established for each square kilometer of

terrain as discussed in Chapter IV. Two main concerns guide dataset preprocessing:

generating three additional versions of the data in successively lower resolutions and

storing the data in a manner that facilitates fast paging.

1. Terrain Polygon Descriptions

The polygons forming the terrain surface are described by the set of attributes

shown in Appendix A. The allowable values are also shown. The set of attributes are the

same no matter what resolution of terrain a particular polygon describes. No attribute

indicating what resolution level a particular polygon describes is necessary, since this can

be derived from the polygon description's relative location within the file. Likewise, the

descriptions of polygons that form features like roads are described by the same set of

attributes. Other features and vehicles displayed in NPSNET are described using the NPS

Object File Format and are displayed using a set of procedures designed for that format.

These object descriptions are stored in files separate from the terrain data.

2. Generating Lower Resolution Versions of the Terrain Surface

The general idea behind forming lower resolution versions of terrain is simple.

Triangles describing four 125 by 125 meter areas are combined to form two triangles

describing a 250 by 250 meter area as shown in Figure 6.1. Likewise, sixteen 125 by 125

44

meter areas are combined to form two triangles describing a 500 by 500 meter area, and

similarly for forming a 1000 by 1000 meter area. Examples of this are shown in Figures 6.2

and 6.3. The generation of lower resolution descriptions concerns the underlying terrain

surface only, and is not concerned with features that lie on top of that surface such as roads.

In the current version of NPSNET, roads are only rendered on high resolution terrain.

Lower
Resolution

Higher
Resolution

Figure 6.1. Multiple Resolution Terrain Description

45

Bold
outlines

polygons
generated

for 1000m
level of
resolution

t

1000
metei

1

s

\\ \\
\ \

\
\\\

\ \ \\
\\\ \

\ \\\
Figure 6.2 Generating 1000 Meter Level of Resolution

500
meters Bold

outlines

polygons
generated

for 500m
level of

resolution

Figure 6.3. Generating 500 Meter Level of Resolution

46

The lower resolutions of the terrain surface for NPSNET are generated one

square kilometer at a time The data for a square kilometer is loaded into an array. The size

of the array is eight by eight, corresponding to the 125 by 125 meter areas of one square

kilometer. The elements of this array are pointers to lists of terrain surface polygon

descriptions. Each list contains all of the polygons for a particular 125 by 125 meter area.

Most 125 by 125 meter areas can be described with two triangles; however, other areas may

contain "micro-terrain" and require more triangles. Micro-terrain is used to more

accurately describe some areas, such as shorelines around small lakes and ponds. 125 by

125 meter areas which contain roads will also have polygon descriptions for these surfaces.

The algorithm is recursive, generating the lowest resolution version of the

terrain first (the 1000 meter resolution) and progressing down to the 250 meter resolution.

As the lower resolution versions of the terrain are generated, they are written to a text file.

The highest resolution version of the terrain (the original 125 meter resolution which

already exists) is simply written to the text file at the appropriate times. This is shown in

Figure 6.4.

3. Selecting Terrain Color at Lower Resolution Levels

The color for a lower resolution terrain polygon is simply the majority color of

the highest resolution polygons contained in the same area. The algorithm for selecting

color is shown in Figure 6.4.

One problem in selecting terrain polygon color is apparent near shorelines. The

problem occurs at cliffs along the coast. In certain situations, the majority of the underlying

polygons are water, but the elevations of the corners of the resulting lower resolution

triangle vary greatly. This causes the generation of a "slope" of water in the lower

resolution description. This problem is solved by checking the elevations of the corners of

triangles whose majority color is water. If all of the corner elevations are not within a

certain tolerance of each other, the color of the triangle is set to soil color. Small

47

discrepancies within the dataset, such as some elevation points on the ocean being over one

meter (versus all being sealevel -- meters elevation), requires the use of a tolerance rather

than just checking the equality all corner elevations are equal. This technique still results in

some lower resolution polygons that represent water, yet have corner elevations that vary

slightly; however, the visual effect is not distracting.

GENERATING LOWER RESOLUTION TERRAIN

if this level >= 250 meter resolution

select color for upper triangle

select color for lower triangle

generate four fill polygons and write them to file

generate two lower resolution polygons and write them to file

generate next higher resolution for four subareas

else

write 125 meter level polygons for this area to file

end if

SELECTING COLOR FOR LOWER RESOLUTION
TERRAIN

determine if majority color of underlying high resolution polygons is

soil or water

set color to majority color

if majority color is water then

if elevations of any two comers of new polygon differ by more

than tolerance then

set color to soil color

end if

end if

Figure 6.4. Algorithms for Generating Lower Resolution Terrain

48

Fill polygons to fill gaps in the terrain surface created at the boundaries of

terrain rendered at different resolutions are also generated as part of this process. The need

for fill polygons is illustrated in Figure 6.5. Each set of two triangles describing a square

area of terrain at the 250, 500, and 1000 meter resolutions has four fill polygons associated

with it—one on the North, South, East and West. A polygon with the same vertices will

appear in two locations in the new dataset. For example, in two adjoining 500 by 500 meter

areas. The vertices of these two fill polygons will be the same; however, the colors of the

fill polygons may be different. The colors for these fill polygons are selected and their

normals are calculated during this process. Determining which fill polygons need to be

rendered in each frame is discussed in Chapter VII.

Lower /
Resolution m
Polygon Jlf

mm .Gap

::;x;>:
:
xo:

:
:;>:;:;x

:
:

:
;

:x
:

:

:
x

: :i:;:;

Higher
Resolution

Polygons

Figure 6.5. Gap Created at Boundary of Resolution Levels

49

B. TERRAIN DATAFILES IN NPSNET

1. File Numbering Scheme

The numbering scheme for files containing multiple resolution terrain data is

depicted in Figure 6.6. The modified dataset contains 2500 files each describing one square

kilometer of terrain surface in four levels of resolution.

t

North

file 0000 file 4900

< '

file 0049 file 4949

Figure 6.6. Terrain Dataflle Numbering Scheme in NPSNET

2. File Format

The format of the binary terrain data files used by NPSNET is shown in

Appendix B. The format is designed for fast access using the C function fread(). The files

containing the multiple resolution versions of the terrain data are much larger than the

original files. The files containing the original version of the data in binary form for the

50

entire 50 by 50 kilometer area total 79 megabytes. The files containing the multiple

resolution version of the data total 147 megabytes. The additional size is due not only to the

multiple resolution descriptions of the terrain, but also due to the addition of fill polygons

required at the boundaries of terrain rendered at different resolutions. Both of the file

formats used for comparison use polygon descriptions with room for six vertices (a total of

18 floats for coordinates of six points in three dimensions) even if the polygon has only

three, four, or five vertices. All polygon descriptions are the same size in bytes in order to

simplify memory allocation during terrain paging as discussed in Chapter IV. Excluding

the counts that appear first in the file, the files contain polygon descriptions stored in

quadtree heap-sort order with the polygon description at the 1000 meter resolution first,

followed by the 500 meter resolution description for the same area, and so on for the 250

and 125 meter resolution descriptions.

C. TERRAIN DATA STRUCTURE

1. Description

The terrain data structure used in NPSNET is an array of quadtrees. The base

array is 50 by 50 and corresponds to the area of the entire dataset; however, only a 16 by

16 subset of this array holds data at any one time. Changing the active area of the simulator

is discussed in Chapter IV. Each element of the array contains a structure consisting of an

array of 85 integers to hold the count of polygons at each quadtree node, and an array of 85

pointers that point to the first polygon belonging to each node. Each element of the array

and its associated quadtree correspond to one square kilometer of terrain. This arrangement

is depicted in Figure 6.7.

51

50 by 50 array

Only 16 by 16 elements contain

data at any given time.

6

1 6

2

3

82

83 2

84 3

polygon count
For each node

polygon
descriptions

1

]

2

3

82

83 \.
84 V N.

\
pointer to first \
polygon at each \.
node \.

Figure 6.7. Terrain Data Structure in NPSNET

52

2. Accessing Data Files

The terrain data files are accessed and the data structure is filled in the

following manner:

1. The 85 integers holding the polygon counts are block read from the data file

into an array.

2. The total polygon count is read from the file.

3. Memory for that number of polygon descriptions is allocated and pointed to

by the root node.

4. The polygon descriptions are block read from the file and pointed to by the

root node.

5. The array containing the polygon counts is traversed and the corresponding

pointers are set into the block of memory holding the polygon descriptions.

Initially 256 files are read in this manner to fill the active area of the data structure. During

terrain paging, files corresponding to a strip of 16 square kilometers of terrain must be

consecutively read in to the data structure in order to update the active area of the simulator.

53

Vn. TERRAIN RENDERING IN NPSNET

Terrain rendering in NPSNET involves several steps. First, only the terrain that is

actually in the field of view is rendered in order to reduce the number of polygons in each

frame. Next the resolution of various parts of the terrain is determined. A determination is

also made as to which fill polygons are needed to close gaps at resolution boundaries.

Finally the terrain is actually rendered.

The examples shown in this chapter assume a 55 degree field ofview and 125 meter

resolution terrain rendered out to 1500 meters, 250 meter resolution terrain rendered from

1500 to 3000 meters, 500 meter resolution terrain rendered from 3000 to 4500 meters, and

1000 meter terrain rendered from 4500 to 6000 meters. The maximum range of terrain can

not exceed beyond the edge of the terrain in the active area. All resolution levels do not

have to be used and the ranges of the resolution levels can be varied; however, the

algorithms used assume no 1000 meter square spans more than two resolution areas. This

would affect the determination of which fill polygons to render.

A. TERRAIN POLYGON CULLING

Culling of terrain polygons outside of the field of view occurs in several steps in

NPSNET. First a bounding box is established around the field of view as shown in Figure

7.1. Only terrain within this bounding box is potentially visible. This is a "rough cut" at

polygon culling and may be all that is necessary in some applications (Jurewicz, 1990, pp.

13-16), but further refinement of the area actually visible is accomplished in NPSNET.

Further refinement involves checking each of the 1000 by 1000 meter squares

contained within the bounding box. Each of these squares is checked to see if any of its

54

corners are contained within the field of view. This is done by calling a procedure that

checks for the intersection of a point and a polygon (Fichten and Jennings, 1988 p. 95). This

procedure is called using each corner of the 1000 meter squares in the bounding box as the

point and the triangle composing the field of view as the polygon. If any of the corners of

a 1000 meter square are within the field of view, then some part of the square is visible and

the square is further processed for resolution and rendering.

^^ bounding
box

square not

^^rendered

.
field of view

A
j

/ \
/ \

J

/
*

\
/

V
± >

/
/

L<r viewer s

location

Figure 7.1. Bounding Box Surrounding Field of View

At certain directions of view the algorithm used for point-polygon intersection is not

able to detect some squares near the viewer's location that are in the field of view. One of

these cases is shown in Figure 7.2. A check is made for these special cases, and in these

cases the appropriate 1000 meter squares are processed for resolution and rendering

without further checking. In fact, the 1000 meter square containing the viewer's location is

always further processed for resolution and rendering. This same problem occurs on the far

55

end of the field of view as shown in Figure 7.1, but these grid squares are ignored because

of their distance from the viewpoint.

^1 4

field

of view
55 degrees

A\\ Squares

^S^ m view,

but not

detected

Figure 7.2. 1000 Meter Squares Not Detected by Point-Polygon Intersection

B. DETERMINING TERRAIN RESOLUTION

The next step is to determine the resolution of the terrain within each 1000 meter

square. A 1000 meter square may eventually have parts of its terrain rendered at two

different resolutions. The determination of resolution, essentially determining which nodes

of the quadtree to render, is performed using an algorithm that checks for intersection of

the quadtree nodes with concentric circles surrounding the viewer's location as shown in

Figure 7.3. The algorithm simply checks the intersection of a circle and a rectangle

56

(Shaffer, 1990, pp. 51-53). The concentric circles correspond to the ranges of the various

resolutions.

16X 16kil()mete r
fieljlofview

a Dtive terrai n are;

s

/
/

\
/ \

y\

/
\

\w\w \

\)
\

\

\ y
/

/ /

\ \ /
\
\

1

2,

Z5m i

50m i

*esoli

esoli

ition

ition

5C€m resolution.

1(KH)mr esolu tion

Figure 7.3. Conceptual Two-Dimensional View of Terrain Active Area, Field of View,

and Terrain Rendered at Different Resolutions

The circle-rectangle intersection algorithm and the point-polygon intersection

algorithm are applied repetitively in order to render only terrain within the field of view and

57

to render that terrain at the appropriate resolution levels. A two dimensional view of the

active area of the terrain, the field of view, and the terrain rendered is shown in Figure 7.3.

Pseudocode displaying the manner in which the algorithms are applied is shown in Figures

7.4 and 7.5.

for all 1000m squares in the active area

if viewer's location is in this square then

process square for resolution and rendering

else

if this is a special case near viewer's location then

process square for resolution and rendering

else

for all corners of this square

if corner is inside field of view then

process square for resolution and rendering

Figure 7.4. Algorithm to Determine Which 1000 Meter Squares Are Within the

Field of View

The cost of determining what terrain is within the field of view and should be

rendered must outweigh the cost of rendering terrain that is actually not in the field of view.

If "fine tuning" which terrain to render is too expensive, it is preferred to perform a simpler

determination of what to render. NPSNET proved to be a graphics bound versus

computation bound program early in its development, so every attempt is made to reduce

calls to graphics procedures. Limiting the amount of terrain rendered to the absolute

minimum is one of these attempts.

58

if 1000m node is inside 1000m resolution circle then

if 1000m node is inside 500m resolution circle then

if 1000m node is inside 250m resolution circle then

if 1000m node is inside 125m resolution circle then

for each 250m node

if 250m node is inside 125m resolution circle then

if 250m node contains view location

render its four 125m nodes

else

for each 1 25m node

if 125m node is in field of view

render 125m node

if all corners of 250m node not within 125m

resolution circle then

render appropriate fill polygons

else /* 250m node is not in 125 resolution circle */

render 250m node

else /* 1000m node is within 250m resolution circle */

for each 500m node

if 500m node is within 250m resolution circle then

for each 250m node

if 250m node is in field of view then

render 250m node

if all corners of 500m node not within 250m

resolution circle then

render appropriate fill polygons

else /* 500m node is not within 250m resolution circle */

render 500m node

else /* 1000m node is inside 500m resolution circle */

for each 500m node

if 500m node is in field of view then

render 500m node

if all corners of 1000m node not within 500m resolution circle then

render appropriate fill polygons

else /* node is within 1000m resolution */

render 1000m node

Figure 7.5. Algorithm for Determining Which Quadtree Nodes Are Rendered

59

C. DETERMINING REQUIRED FILL POLYGONS

The algorithm used for circle-rectangle intersection in a modified version is used to

determine which fill polygons, if any, need to be rendered in order to close gaps at the

boundaries of terrain rendered at different resolutions. The modified version of the

algorithm is applied after the original version has already determined if in fact a particular

terrain square intersects a particular resolution circle. The algorithm is maintained in two

separate versions because the modified version, which determines which specific fill

polygons are required, is more computationally expensive than the initial version. The

initial version only checks if part of a terrain square lies within a given resolution circle.

The required fill polygons correspond to which vertices of a square of terrain lie outside of

a resolution circle. This is highlighted in Figures 7.6 and 7.7. A four element boolean array

is used to record which fill polygons need to be rendered and which ones do not. Note that

this algorithm is applied under the assumption that a square of terrain does not span more

than two different resolutions; the algorithm becomes more complicated (and more

computationally expensive) if this is not the case. In this version of NPSNET, where the

largest square of terrain being checked is 1000 by 1000 meters, this means resolution

circles must be at least 1414.21 meters apart (the length of the diagonal of a 1000 by 1000

meter square).

60

if part of this square is inside this resolution circle then

apply modified circle-rectangle intersection algorithm

if one or no corners are outside of this resolution circle then

/* cases 1 and 2 from Figure 7.7 */

no fill polygons are needed

if two corners are outside of this resolution circle then

/* case3 from Figure 7.7 */

fill polygon between these two corners is needed

if three corners are outside this resolution circle then

/* case 4 from Figure 7.7 */

two fill polygons between these three corners is needed

if four comers are outside this resolution circle

/* case 5 from Figure 7.7 */

/* circle intersects a side of the terrain square, but not any comers */

three fill polygons corresponding to three sides of square outside of

resolution circle are required

Figure 7.6. Determining Required Fill Polygons

61

B /"

B / B

Case 1 : None Required

B

T
B

Case 2: None Required

++

B

Case 4: Two Required

B

A

H-

B

Case 3: One Required

++

B

Case 5: Three Required

Terrain square being checked
for fill polygons outlined in

bold

— Locations of required fill

1

1

polygons

A Lower Resolution

B Higher Resolution

Figure 7.7. Circle-Rectangle Intersection and Required Fill Polygons

62

D. RENDERING TERRAIN SURFACE AND ROADS

Terrain in NPSNET is rendered using polygon drawing primitives. This involves

passing the polygon normal vector and the vertex coordinates to the graphics hardware for

transformation, lighting, and clipping. Special steps must be taken when rendering roads on

terrain. In the dataset used in NPSNET, the polygons forming the road surface are coplanar

with the polygons forming the underlying terrain surface. The roads must be "decaled" on

the terrain. Decaling involves the following steps:

1. Drawing the underlying terrain polygons in the z-buffer modifying only color

values and not range values.

2. Drawing the road polygons in the z-buffer modifying only color values and

not range values.

3. Drawing the underlying terrain polygons in the z-buffer again modifying only

range values and not color values.

These steps ensure that "polygon tearing" does not occur as a result of rendering coplanar

polygons. Decaling involves rendering terrain twice and is therefore expensive to perform.

For this reason roads in NPSNET are only rendered on terrain at the highest resolution, and

not on terrain at the 250, 500, and 1000 meter resolution levels.

E. RENDERING OBJECTS ON MULTI-RESOLUTION TERRAIN

One problem quickly becomes apparent when rendering objects on multi-resolution

terrain—the elevation of a given point can be different at different resolution levels. If the

data for the elevation of objects is only available for one resolution level, then using this

data to place objects on other resolution levels of terrain will place objects below the terrain

surface or suspended in air. This problem is illustrated in Figure 7.8.

63

Terrain Profiles

Tree 1

High
Resolution

Medium
Resolution

Low
Resolution

Figure 7.8. Placing Objects on Multi-Resolution Terrain Using Only High
Resolution Elevations

64

This problem is solved in NPSNET by preprocessing the data regarding the location

and elevation of objects. Four different elevations are generated for each instantiation of

each object—one for each resolution level. The algorithm for determining these elevations

is adapted from one used in MPS (Fichten and Jennings, 1988, p. 95) to determine the

elevation of vehicles as they move over terrain. The algorithm is shown in Figure 7.9. The

algorithm is applied for each level of resolution. The generated elevations are stored in a

file along with the coordinate location of each object.

YQ Y5
i
Y1

i i ' f 1

I
z

, A Y
All Y values

are elevationsX V ^1

gridsize

TKY4

at point

indicated

Zl

i

'
i

1'

Y2 Y3

Zl = gridsize - X
percentage = X / gridsize

if x = 0.0 then

Y = Y0 + ((Y2 - Y0) * Z) / gridsize)

else

Y4 = Y0 + ((Y3 - Y0) * percentage)

if (Z < X)

Y5 = Y0 + ((Y1 - Y0) * percentage)

Y = Y5 + ((Y4 - Y5) * (Z/X))

else

Y5 = Y2 + (Y3 - Y2)

«

c percentage

Y = Y5 + (((Y4 - Y5) * (gridsize -Z))/Z1)

Figure 7.9. Algorithm for Determining Elevation Within Square of Terrain

65

VIII. SUMMARY

A. RESULTS

1. Terrain Paging

Terrain paging allows NPSNET to use the entire available dataset for

simulation. Dividing the terrain data into files based on one square kilometer areas of

terrain simplifies implementation and editing the data since this follows the convention of

the military grid reference system. On a multiple processor machine, terrain paging has a

negligible effect on simulator performance. Four parallel processes, one for paging terrain

in each of the four cardinal directions, allow motion to continue while terrain is paged in

the direction of travel. In this implementation, files used for terrain data contain one square

kilometer of terrain data, in four resolutions, stored in quadtree heap-sort order. The

algorithms used for terrain paging will support other data configurations since paging only

involves accessing files and is not dependent on the underlying structure of the data.

2. Multiple Resolution

The implementation of a hierarchical data structure based on quadtrees

provides a means to implement multiple resolutions of data. The availability of multiple

resolution provides a means to reduce the number of polygons composing each individual

frame. Figure 8.1 shows a comparison of the number of polygons forming the terrain

surface under different resolution configurations. The numbers shown represent only

terrain surface polygons within the field of view. This includes fill polygons in

configurations with more than one resolution. These numbers do not include polygons for

road surfaces or any objects placed on the terrain.

66

Resolution Distance Number of

Configuration Polygons

High Resolution 0-2500 meters 415

High Resolution 0-6000 meters 2080

High Resolution 0-3000 meters 1008

Med High Resolution 3000-6000 meters

High Resolution 0-2000 meters 641

Med High Resolution 2000-4000 meters

Med Low Resolution 4000-6000

High Resolution 0-1500 meters 435

Med High Resolution 1500-3000 meters

Med Low Resolution 3000-4500 meters

Low Resolution 4500-6000 meters

Figure 8.1. Comparison of Number of Polygons in Terrain Surface

The number of polygons in the terrain surface affect the frame rate of

NPSNET. Figure 8.2 shows a comparison of frame rates for different resolution

configurations. The frame rates are measured from the same view point on the terrain and

viewing in the same direction. Several random vehicles are also present in the frames. No

other objects are rendered in the test scenes. The measurements were taken on an IRIS 4D/

240VGX.

The results show that terrain in four resolutions out to 6000 meters, can be

rendered at approximately the same expense as terrain in one resolution rendered out to

67

2500 meters. This validates the incorporation of multiple resolution to increase the range

of views; however, placing objects and vehicles on the additional terrain available will

reduce the frame rate. Any other computations which vary depending on the amount of

terrain in view will also affect the frame rate.

Resolution Distance Frames per

Configuration Second

High Resolution 0-2500 meters 6.3

High Resolution 0-1000 meters 8.2

Med High Resolution 1000-2500 meters

High Resolution 0-3000 meters 4.4

Med High Resolution 3000-6000 meters

High Resolution 0-2000 meters 5.4

Med High Resolution 2000-4000 meters

Med Low Resolution 4000-6000

High Resolution 0-1500 meters 6.5

Med High Resolution 1500-3000 meters

Med Low Resolution 3000-4500 meters

Low Resolution 4500-6000 meters

Figure 8.2. Comparison of Frame Rates

Rendering a large area of terrain and placing features and vehicles on all terrain

in the field of view adversely affects the frame rate of the simulator if the density of these

objects is large. Ways to overcome this include not rendering features and vehicles on

lower resolution terrain, or rendering lower resolution versions of these objects.

68

B. CONCLUSIONS

The implementation of terrain paging in NPSNET efficiently allows the use of a

large area of terrain for simulation. With this system of terrain paging, the size of the terrain

area used is only limited by the amount of secondary memory. Using parallel processing

for updating the active area of terrain prevents waiting for additional terrain to become

available for rendering.

Quadtrees provide a means to effectively implement multiple resolutions of terrain.

Quadtrees are particularly suited for terrain data applications since they can be used to

divide the terrain into a system of squares in the same manner as grid reference systems.

Many algorithms and techniques which support quadtrees have been developed and these

assist in efficient implementations.

The determination of resolution areas can be computationally expensive. The

savings from rendering terrain at different resolutions must outweigh the cost of

determining resolution areas. A quick, rough determination may be better than a stringent

one. The implementation of multiple resolutions must support the objectives of the

simulator. The way in which multiple resolutions of data is implemented should be derived

from these goals.

C. SUGGESTIONS FOR FUTURE WORK

This implementation of terrain paging and hierarchical data structures in NPSNET

can serve as the basis for further research in these and associated areas. Further work should

involve improving efficiency, reducing memory requirements, and adding additional

capabilities.

Full quadtrees are used to store terrain data in this implementation even though a

low resolution description of some areas of terrain would suffice. An example is large areas

of water; these areas could be described in only the lowest resolution and no surface detail

69

would be lost. Such terrain descriptions could be developed by applying adaptive

refinement to the original terrain data. Using quadtrees that are not full would change many

of the algorithms used in this implementation, but less memory would be needed to store

the terrain descriptions.

The ability to display multiple resolution terrain is important when using display

devices with wider fields of view. Such devices include head worn goggles and multiple

screen displays. When the field of view is wide, not only can lower resolution terrain be

displayed in areas far away from the viewer, but also along the edges of the field of view.

This would result in a configuration where the highest resolution terrain is displayed near

and directly in front of the viewer. Lower resolution terrain would be displayed at greater

distances and to the sides of the viewer.

The determination of what terrain to render and the resolution of that terrain

requires extensive computation. This implementation uses a circle-rectangle intersection

algorithm and a point-polygon intersection algorithm extensively. Any improvement in

these algorithms would have a positive effect on the performance of NPSNET.

The terrain paging algorithm could be adapted to support a more realistic aircraft

view. Adding additional, lower resolution terrain descriptions—two by two, four by four,

eight by eight kilometers, etc.—would enable the simulator to provide longer range views

at higher altitudes. The goal should be to allow views out to 26 nautical miles, the generally

accepted limit of view from an aircraft (Schachter, 1983, p. 75). The incorporation of such

an air view would also require the view volume to vary based on the altitude of the aircraft

and the pilot's angle of view toward the earth.

The attributes which describe terrain polygons can be used to determine mobility

across terrain. A system could be implemented which uses these attributes to increase or

decrease mobility of vehicles as they move over terrain.

70

APPENDIX A

TERRAIN POLYGON ATTRIBUTES

ATTRIBUTE TYPE DESCRIPTION

X INDEX Integer Index of upper left corner of

square containing polygon

in 125 's of meters

Z INDEX Integer Index of upper left corner of

square containing polygon in

125's of meters

NUMBER OF

POINTS

Integer Number of vertices of the

polygon

COLOR Integer Color of the polygon

6 - Paved Roads

12 -Sand

14 - Water

17 - Dirt Roads

LEVEL Integer Relative level of the polygon

1 - earth or water

2 - fill polygons

10 - roads

71

ATTRIBUTE TYPE DESCRIPTION

TRIANGLE Character Which triangle of the square

this polygon belongs to

u - upper

1 - lower

f - fill polygon

NORMAL 3 floats X,Y, and Z values of polygon

normal vector

VERTICE 3 Floats X, Y, Z coordinates of each

vertex up to a maximum of

six

72

APPENDIX B

TERRAIN DATAFILE FORMAT

Terrain surface polygons are described using the following structure. The allowable

values for the fields are discussed in Appendix B.

POLYGON DESCRIPTION

FIELD NUMBER TYPE DESCRIPTION

xgrid 4 byte integer X index of upper left

corner of square

containing polygon
in 125's of meters.

zgrid 1 4 byte integer Z index of upper left

corner of square

containing polygon
in 125's of meters.

num_of_pnts 1 4 byte integer Number of points in

this polygon

color 1 4 byte integer Color of polygon

level 1 4 byte integer Terrain level of this

polygon
(not resolution level).

which_tri 1 4 byte character Which triangle of the

square contains this

polygon.

73

FIELD NUMBER TYPE DESCRIPTION

normal 3X4 bytes float Unit polygon normal
vector

points 3X4 byte float Coordinates of

polygon vertices in

three dimensions

Six vertices are used because this is the maximim number of sides a road decal can have.

Overlaying a rectangle on a triangle produces a polygon of intersection with from three to

six sides. If a polygon has less than six vertices, the coordinate values for the unused

vertices are 0.0, 0.0, 0.0.

The individual data files used in NPSNET contain surface data for one square

kilometer of terrain. The format for the binary files is as follows:

FIELD NUMBER TYPE DESCRIPTION

nodecount

totalcount

polygon

85

totalcount

4 byte integer

4 byte integer

108 byte

polygon description

as indicated above

Count of polygons in

each node of four

level quadtree.

Total polygon
descriptions in file.

Multi-resolution

description

of terrain in this

square kilometer.

The polygons are stored in the files in quadtree heap-sort order. The first polygon

descriptions in the files are descriptions for the terrain at the 1000 meter resolution level,

followed by the 500 meter resolution level, 250 meter resolution level, and 125 meter

resolution level.

The first four polygon descriptions in each node at the 1000, 500, and 250 meter

resolution levels are for fill polygons. These nodes each contain a total of six polygons-

four fill polygons and two terrain surface polygons. The nodes at the 125 meter level do

not contain fill polygons, but may contain polygons which describe roads. An annotated

extract from a text version of a data file begins on the next page.

74

2

2

2

2

6

2

2

2

2

7

6

2

2

2

6

5

2

4 _

276
208
0.0
265
260
270
0.0
0.0
0.0

_Count of polygons in

each quadtree node

80 3 12 2 f

00000 0.000000 1.000000
00.000000 585.216003 10000
00.000000 657.148804 10000
00.000000 638.251221 10000
00000 0.000000 0.000000
00000 0.000000 0.000000
00000 0.000000 0.000000

000000
000000
000000

Total polygon
descriptions in file

Fill polygon for

1000 meter resolution

208 80 3 12 1 1

0.018684 0.988681 0.148867
27000.000000 638.251221 10000.000000
26000.000000 657.148804 10000.000000
27000.000000 487.679993 11000.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

Polygon description for

lower triangle in this

-1000X 1000 meter

square

75

208 80 3 12 1 u

0.029873 0.989996 0.137900
26000.000000 517.855225 11000
26000.000000 657.148804 10000
27000.000000 487.679993 11000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

000000
000000
000000

Polygon description for

upper triangle in this

1000 X 1000 meter
square.

210 80 3 12 2 f

0.000000 0.000000 1.000000
26375.000000 606.552002 10000. 000000
26250.000000 623.011230 10000. 000000
26500.000000 585.216003 10000. 000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
210 80 3 12 2 f

1.000000 0.000000 0.000000
26500.000000 540.410400 10125 000000
26500.000000 585.216003 10000
26500.000000 562.965637 10250
0.000000 0.000000 0.000000

.000000

.000000 Polygon descriptions for

an entire 250 X 250
meter area.

0.000000 0.000000 0.000000 Note first four

0.000000 0.000000 0.000000
210 80 3 12 2 f

0.000000 0.000000 -1.000000
26375.000000 524.560791 10250 000000

polygons are fill

polygons to mate
terrain of different

resolutions

26500.000000 562.965637 10250 000000
26250.000000 585.216003 10250 000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
210 80 4 12 2 f

-1.000000 0.000000 0.000000
26250.000000 573.023987 10125. 000000
26250.000000 585.216003 10250. 000000
26250.000000 623.011230 10000. 000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 \ i

76

210 80 3 12 1 1
It

0.148907 0.984958 0.087663
26500.000000 585.216003 10000 000000
26250.000000 623.011230 10000 000000
26500.000000 562.965637 10250 000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
210 80 3 12 1 u

0.087663 0.984958 0.148907
26250.000000 585.216003 10250 .000000
26250.000000 623.011230 10000 .000000
26500.000000 562.965637 10250 .000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

Polygon description

for an entire

250 X 250 meter area

208 87 3 12

-0.352554 0.

26000.000000
26125.000000
26125.000000
0.000000 0.0
0.000000 0.0
0.000000 0.0
208 87 3 12

-0.331321 0.

26000.000000
26000.000000
26125.000000
0.000000 0.0
0.000000 0.0
0.000000 0.0
208 87 3 17

-0.353757 0.

26000.000000
26000.990234
26002.029297
0.000000 0.0
0.000000 0.0
0.000000 0.0

1 1

920919 -0.166172
492.252014 10875. 000000
562.660828 11000. 000000
540.105591 10875 000000

00000 0.000000
00000 0.000000
00000 0.000000
1 u

924328 -0.189326
492.252014 10875 .000000
517.855225 11000 .000000
562.660828 11000 .000000

00000 0.000000
00000 0.000000
00000 0.000000
10 1

920358 -0.166724
492.250000 10875 000000
492.809998 10875 990234
493.029999 10875 000000

00000 0.000000
00000 0.000000
00000 0.000000 \

Polygon descriptions for

an entire 125 X 125 meter

area. Note two polygons

describing underlying

terrain and two polygons

descibing a road surface.

77

208 87 3 17 10 u

-0.332016 0.923850 -0.190439
26000.000000 492.250000 10875
26000.000000 492.649994 10876
26000.990234 492.809998 10875
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

000000
940430
990234

78

LIST OF REFERENCES

Airey, John M., Increasing Update Rates in the Building Walkthrough System with

Automatic Model-Space Subdivision and Potentially Visible Set Calculations, Ph.D.

Dissertation, University of North Carolina, Chapel Hill, North Carolina, 1990.

Air Force Wright Aeronautical Laboratories Report TR-86-1177, Hierarchical Data

Structures for a Digital Terrain Map System, by Tiburon Systems Inc., December 1986.

Cheeseman, Curtis P., Moving Platform Simulator III: An Enhanced High-Performance

Real-Time Simulator with Multiple Resolution Display and Lighting, M.S. Thesis, Naval

Postgraduate School, Monterey, California, June 1990.

DeHaemer, Michael J., Jr., Simplification of Objects Rendered by Polygonal

Approximation, M.S. Thesis, Naval Postgraduate School, Monterey, California, December

1989.

Defense Mapping Agency, Specification PS/ICD/200 PS/ICF/200, Product Specifications

for Digital Terrain Elevation Data (DTED), April 1986.

Fichten, Mark A. and David H. Jennings, Meaningful Real-Time Graphics Workstation

Performance Measurements, M.S. Thesis, Naval Postgraduate School, Monterey,

California, December 1988.

Fuchs, Henry, Kedem, Zvi M., and Naylor, Bruce F, On Visible Surface Generation by A
Priori Tree Structures, Proceedings of SIGGRAPH, Volume 14, Number 3, July 1980,

pp.124-133.

Gargantini, Irene, An Effective Way to Represent Quadtrees, Communications of the

ACM, Volume 25, Number 12, December 1982, pp. 905-910.

Jurewicz, Thomas A., A Real-Time Autonomous Underwater Vehicle Dynamic Simulator,

M.S. Thesis, Naval Postgraduate School, Monterey, California, December 1990.

King, David M. and Prevatt, Richard M. Ill, Rapid Production of Graphical User

Interfaces, M.S. Thesis, Naval Postgraduate School, Monterey, California, December

1990.

Lang, Eric and Wever, Peter, SDIS Version 3.0 User's Guide, BBN Systems and

Technologies, Bellevue, Washington, August 1990.

79

Oliver, Michael R. and Stahl, David J., Interactive, Networked, Moving Platform

Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, California, December

1987.

Samet, Hanan, The Design and Analysis of Spatial Data Structures, Addison-Wesley,

Reading, Massachusetts, 1990a.

Samet, Hanan, Applications of Spatial Data Structures, Addison-Wesley, Reading,

Massachusetts, 1990b.

Schachter, Bruce J., Computer Image Generation, John Wiley & Sons, New York, 1983.

Shaffer, Clifford, "Fast Circle-Rectangle Intersection", Graphics Gems, Ed. Andrew
Glassner, Academic Press, Boston, 1990, pp. 51-53.

Smith, Douglas B., and Dale G. Streyle, An Inexpensive Real-Time Interactive Three-

Dimensional Flight Simulation System, M.S. Thesis, Naval Postgraduate School,

Monterey, California, June 1987.

Thorpe, Jack A., "The New Technology of Large Scale Simulator Simulator Networking:

Implications for Mastering the Art of Warfighting," Proceedings of the Ninth Interservice

Industry Training Systems Conference, November 1987.

Weeks, Gordon K., Jr. and Charles E. Phillips, Jr., The Command and Control Workstation

of the Future: Subsurface and Periscope Views, M.S. Thesis, Naval Postgraduate School,

Monterey, California, June 1989.

Winn, Michael C. and Strong, Randolph P., Moving Platform Simulator II: A Networked

Real-Time Simulator with Intervisibility Displays, M.S. Thesis, Naval Postgraduate

School, Monterey, California, June 1989.

Zyda, Michael J., Graphics Course Notes, Book 7, Naval Postgraduate School, Monterey,

California, 1991a.

Zyda, Michael J., Graphics Course Notes, Book 9, Naval Postgraduate School, Monterey,

California, 1991b.

Zyda, Michael J. and Pratt, David R., NPSNET: A 3D Visual Simulatorfor Virtual World

Exploration and Experimentation, 1991 Society for Information Display International

Symposium Digest of Technical Papers, Volume XXII, May 1991, pp 361-364.

80

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, Virginia 22304-6145

2. Dudley Knox Library

Code 52

Naval Postgraduate School

Monterey, California 93943-5100

3. Dr. Michael J. Zyda

Code CS/Zk, Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5100

4. David R. Pratt

Code CS/Pr, Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5100

5. Captain Randall L. Mackey

Rt. 2, Box 25

Bancroft, Nebraska 68004

si

Thesis
.12255 Mackey
~.l NPSNET : hierarchical

data structures for

real-time three-dimen-
sional visual simulation.

