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A mechanism for establishment and maintenance of the
meridional overturning in the upper ocean

by Timour Radko1

ABSTRACT
A two-dimensional analytical residual-mean model of the meridional overturning in the upper

ocean is presented which illustrates dynamics of the interaction between the Northern and Southern
hemispheres. The theory is based on the semi-adiabatic approximation in which all diabatic
processes are confined to the upper mixed layer. The overturning circulation is driven directly by the
wind forcing which, in our model, is affected by the sea-surface temperature distribution. The surface
boundary conditions are symmetric with respect to the equator, and therefore one of the steady state
solutions represents a symmetric flow characterized by the absence of the inter-hemispheric
buoyancy fluxes. However, linear stability analysis, which takes into account both mechanical and
thermodynamic forcing at the sea surface, indicates that the symmetric configuration such as this is
unstable. The instability results in transition to the asymmetric regime with finite cross-equatorial
exchange flows and heat transfer. Weakly nonlinear instability theory makes it possible to estimate
the equilibrium fluxes in the new asymmetric steady states; for the oceanographically relevant range
of parameters our model predicts the meridional overturning of about 10 Sv. While earlier studies
considered the role of salt advection in spontaneous symmetry breaking, our study relies on a positive
feedback between atmospheric winds and the oceanic meridional circulation.

1. Introduction

A fundamental problem in physical oceanography and climate science concerns the
mechanism, magnitude, and stability of the Meridional Overturning Circulation (MOC).
Modern theory of the meridional overturning (Webb and Suginohara, 2001; Samelson,
2004; Boccaletti et al., 2005; among others) identifies two distinct dynamic components of
circulation – the shallow overturning cells in the main thermocline and deep circulation in
the abyssal ocean. Abyssal thermohaline circulation is thought to be maintained by the
balance between the cross-isopycnal upwelling of deep waters and diapycnal diffusion
(Stommel, 1958; Munk, 1966). On the other hand, dynamics of the strongly stratified
central thermocline and the associated shallow overturning are controlled by the ventila-
tion of water masses along the isopycnals that outcrop at the sea surface (Luyten et al.,
1983). The role of the diapycnal mixing in maintenance of the upper cell is rather uncertain
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(Marshall et al., 2002). Vertical diffusivity in the central thermocline is very weak – on the
order of kV � 10�5 m2s�1 (Ledwell et al., 1993; Gregg, 1989) – much less than the values
(5 � 10 � 10�5 m2s�1) required by diffusive models to reproduce the MOC of realistic
strength (e.g. Bryan, 1987). Unlike deep abyssal layers, the thermocline is also directly
forced by surface winds which provide the energy for meridional overturning, thus making
it possible to maintain the circulation even in the absence of vertical diffusion below the
mixed layer.

Historically, models of the meridional overturning were focused on effects of the
thermodynamic forcing of individual density components, and the vertical mixing was
frequently invoked as a means for communicating the buoyancy forcing signal from the
surface into the ocean interior. A number of comprehensive discussions of thermohaline
circulation theory include those by Welander (1986) and Whitehead (1995). A classical
view is expressed by a simple idea (Stommel, 1961) that the combined heating and
evaporation at the sea surface can produce multiple states of ocean circulation with the
finite amplitude MOC. In particular, the meridional overturning in the equatorially
symmetric basins is often attributed to the asymmetric instabilities related to the mixed
surface boundary conditions for temperature and salinity (Rooth, 1982; Bryan, 1986; Thual
and McWilliams, 1992; Dijkstra and Neelin, 2000; among others). The equatorially
symmetric conditions allow for solutions with a different sense of circulation; both
northward and southward sinking solutions are possible. In an attempt to explain the
selection of the northern sinking mode in the Atlantic circulation, Dijkstra et al. (2003)
examined the impact of various asymmetric features and concluded that the presence of the
reentrant Antarctic Circumpolar Current may be the most substantial asymmetry inducing
factor. Theoretical models generally ignore the atmospheric wind stress, aside from a few
attempts to represent it in the low order box models (van Veen, 2003; Pasquero and
Tziperman, 2004).

The disregard of the wind stress effects in the classical theories of thermohaline
circulation is related to their emphasis on the dynamics of the abyssal ocean, shielded from
the direct influence of winds (Roemmich and Wunsh, 1985; Munk and Wunsch, 1998).
However the relative significance of the upper and deep circulation cells should be
re-evaluated in the context of a recent suggestion (Boccaletti et al., 2005) that the
meridional transport of heat is controlled by the processes operating in the upper ocean. In
an attempt to meaningfully quantify partitioning of the oceanic heat flux between the deep
and shallow overturning cells, these authors introduced the “heatfunction” identifying the
components of circulation which effectively contribute to the total meridional heat flux.
Diagnostics of a numerical model in Boccaletti et al. (2005) have shown that the
heatfunction represents a surface-intensified flow largely limited to the main thermocline,
and therefore the meridional heat transport is dominated by the contribution from the upper
branch of the MOC.

Although dynamics of the meridional overturning, particularly in the upper cell are,
overall, still poorly understood, several features are known from the numerical modeling
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studies. Thus, Toggweiler and Samuels (1995, 1998) and Klinger et al. (2004) demonstrate
the sensitivity of the meridional overturning to the strength of the westerly winds in the
Southern hemisphere. Timmermann and Goosse (2004) go further and argue that neglect-
ing the wind stress in multi-century simulations eventually leads to a complete shutdown of
the conveyor belt circulation. These numerical results are consistent with a highly
simplified description of the Atlantic pole-to-pole MOC in Gnanadesikan’s (1999) model
which combines effects of the low-latitude diffusion with the Ekman transport and eddies
in the Antarctic Circumpolar Current (ACC).

The paramount significance of the wind stress for the meridional overturning casts some
doubt on the ability of the classical thermodynamically-driven Stommel-type models to
adequately represent dynamics of the upper cell. While the effects of salt advection and
geometry of the ocean basins clearly play a role in the dynamics of the MOC, here we
argue that, in addition, there is an alternative wind-driven mechanism that has been largely
overlooked in the extant theories. We demonstrate that the finite amplitude pole-to-pole
overturning circulation may arise entirely as a result of a positive feedback between the
atmospheric winds and the sea-surface temperature gradient. The proposed mechanism is
nondiffusive – a feature which is particularly appealing in view of the uncertainties with
regard to the values and consequences of small-scale mixing in the upper ocean. To
elucidate the dynamics of the wind/MOC interaction, we consider the wind feedback
mechanism in isolation from the more traditional thermohaline effects and thus demon-
strate its ability to account for a significant fraction of the overall overturning.

There are two major technical challenges in developing an illustrative dynamical theory
for the upper overturning cell: (i) incorporating mechanical forcing by winds and the
air-sea buoyancy fluxes in a single framework; and (ii) properly representing effects of
mesoscale eddies. It is now widely accepted that the eddy transfer of buoyancy and tracers
in the upper ocean is often comparable in magnitude to the advection by the time-mean
flow (e.g., Radko and Marshall, 2004; Henning and Vallis, 2004). Since eddies generally
tend to counteract the Eulerian transport, the residual flow – sum of the mean and
eddy-induced circulations – is considerably different from the mean. It was not until
recently that analytical residual-mean theories were developed which explain the interac-
tion of surface winds, geostrophic eddies and surface buoyancy fluxes – see Marshall and
Radko (2003), Radko (2005, R05 hereafter) and Olbers and Visbeck (2005). So far these
models have only been applied locally to the Antarctic Circumpolar Current and therefore
they do not represent the complete mechanics of the meridional overturning. Our purpose
here is to extend the residual-mean theory to conceptualize the global dynamics of the
upper cell. Processes in both hemispheres will be taken into account – these include surface
heating and upwelling in the Southern Ocean, cooling and high latitude sinking in the
Northern hemisphere.

To build up our understanding of the meridional overturning in the upper ocean we find
it instructive to consider its idealized abstraction – the aqua-planet model – which is meant
to represent the zonally averaged oceanic circulation. Following Marshall and Radko
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(2003) and R05 we use the semi-adiabatic framework (reviewed in Section 2) in which all
diabatic processes are confined to the upper mixed layer. The atmosphere is assumed to be
fully interactive – both air-sea buoyancy flux and the wind stress respond to the changes in
the surface buoyancy distribution. The surface boundary conditions are symmetric with
respect to the equator, and therefore one possible solution of the model equations (Section
3) represents a symmetric configuration without any exchange of buoyancy and tracers
between the hemispheres. However, stability analysis in Section 4 indicates that a steady
state such as this is unstable. The instability modifies the basic state, resulting in the
asymmetric circulation with finite overturning and transfer of heat between the two
hemispheres within the thermocline. The weakly nonlinear stability analysis (Section 5)
makes it possible to analytically describe the pattern of the overturning circulation in the
new, asymmetric states. Two stable states can be realized; in one case ocean transfers heat
to the South, and in the other (equally possible) configuration – to the North. In Section 6
we estimate the magnitude of overturning for typical oceanographic values of governing
parameters, and find the MOC of approximately 10 Sv – not unlike the numbers usually
cited (Talley, 2003) for the upper overturning cell in the ocean. Details of the weakly
nonlinear instability theory are relegated to Appendix A, and in Appendix B we discuss the
utility and limitations of our two-dimensional model as a conceptual theory of the
meridional overturning in the upper ocean.

2. Theoretical framework

The following two-dimensional model represents a zonally averaged Meridional Over-
turning Circulation in the upper ocean. The ocean dynamics are abstracted to that of an
aqua planet, where the absence of meridional boundaries greatly simplifies the dynamics
and thus renders the problem analytically tractable. This idealized thought experiment is
representative of models of thermohaline circulation of intermediate complexity (Stocker
and Wright, 1991; Cessi and Young, 1992; Thual and McWilliams, 1992; Dijkstra and
Molemaker, 1997) – more complicated than the box models (Stommel, 1961) and yet
simple enough to reveal the basic physics and dynamics at play. In our case, however,
connection of the two-dimensional theory to the oceanic overturning may be more than
formal. The fundamentally three-dimensional effects, not taken into account by the
aqua-planet model, are discussed in Appendix B, where we argue that their inclusion
would not dramatically alter the major characteristics of our solution. Mathematical
formulation follows that of R05, who constructed the analytical model for the upper cell of
the meridional overturning in the Antarctic Circumpolar Current (ACC) by making use of
the leading order balance between the time mean and eddy-induced circulations. Here we
obtain closed solutions extending into the Northern hemisphere, which enables us to
examine the interaction between the Northern and Southern components of the MOC.

It has been long recognized (Andrews and McIntyre, 1976) that the distribution of
buoyancy and tracers in the eddying flows cannot be accounted for by the Eulerian mean
circulation, but also involves the eddy induced advection, a process similar to the Stokes
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drift. While the time mean flow (represented by the mean streamfunction �� ) exhibits the
tendency to overturn the isopycnal surfaces (b� ), the mesoscale eddies (�*) act in the
opposite sense, tending to flatten them out (see the schematic diagram in Fig. 1). The
relatively weak residual flow is represented by a streamfunction

�res � �� � �* (1)

Figure 1. Schematic diagram illustrating the instability of the symmetric configuration. a) Basic state
consisting of a symmetric ocean in thermal equilibrium with atmosphere and zero residual
circulation. b) Perturbed state in which the buoyancy is slightly reduced in the Southern
Hemisphere and increased in the Northern Hemisphere. The Eulerian mean flow (blue arrows) is
exactly balanced by the eddy-induced transport (yellow arrows) in the symmetric state (a).
However this balance is perturbed when winds in the Southern (Northern) hemisphere increase
(decrease) in response to the changes in the sea-surface temperature in (b). The resulting finite
residual circulation (purple arrows) represents the northern-sinking MOC, which further decreases
(increases) the surface buoyancy in the Northern (Southern) hemisphere, providing a positive
feedback for the instability.
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which advects buoyancy and passive tracers in the meridional plane to offset the diabatic
sources and sinks.

Following R05, the problem is solved separately in a thin, vertically homogeneous
mixed layer (�hm � z � 0) and in the stratified interior ( z � �hm). For the interior, it is
assumed that the eddy transport is largely directed along the time mean buoyancy surfaces
(the limit of “adiabatic eddies”), and therefore

webe

vebe

� �
b� y

b� z

� s, (2)

where (vebe, webe) are the eddy buoyancy flux components; averages are taken in time (t)
and zonal coordinate (x); and s is the slope of the isopycnals. The eddy streamfunction in
this case can be defined (Held and Schneider, 1999) as

�* �
vebe

b� z

� �
webe

b� y

. (3)

Introducing the eddy streamfunction (3) greatly simplifies the time mean zonally averaged
buoyancy equation

�b�

�t
� v�

�b�

�y
� w�

�b�

�z
�

�b�

�t
� J��� , b� � � �

�

�y
�vebe� �

�

�z
�webe� �

�B

�z
, (4)

where buoyancy forcing from the air-sea interaction and small-scale mixing processes are
expressed as the divergence of a buoyancy flux B, and J(a, b) � (�a/� y)(�b/� z) �
(�a/� z)(�b/� y). For adiabatic eddies satisfying (2), the buoyancy equation reduces to

�b�

�t
� J��res, b� � �

�B

�z
, (5)

where �res is the residual streamfunction in Eq. (1). Eq. (5) can be interpreted as a
statement that the advection of buoyancy on long time scales in the eddying field is
accomplished by the residual, rather than mean, circulation. It is also conventional (Gent
and McWilliams, 1990) to assume that eddies transfer properties down the large scale
gradient, and therefore the lateral eddy buoyancy flux can be expressed thus

vebe � �Kb� y, (6)

where the eddy transfer coefficient K is taken to be uniform. While (6) is still one of the
most popular parameterizations, several alternatives have been formulated and used (e.g.,
Visbeck et al., 1997). R05 – a model based on the same mathematical framework as ours –
explicitly examined the sensitivity of model results to the choice of eddy closure. Two
parameterizations have been considered: transfer coefficient K which depends on the local
characteristics of the flow (Visbeck et al., 1997) and the uniform diffusivity model. The
two sets of resulting solutions were qualitatively similar, indicating that our results are not
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particularly sensitive to a specific eddy parameterization. The present study extends R05
into the nonlinear regime and adopts interactive boundary conditions, for which consider-
ations of analytical tractability and transparency become important, motivating the
simplest closure with K � const.

The time-mean transport below the Ekman layer is given by

�� � �
	


f
, 	
 � 	�/
0, for z � �hm (7)

where 	� is the zonally averaged surface wind stress. The eddy parameterization (6) makes it
possible to express the eddy streamfunction in the interior as

�* �
vebe

b� z

� Ks. (8)

Next, we assume that the explicit buoyancy forcing (B) in the interior vanishes, which
reduces the buoyancy equation (5) to

�b�

�t
� J��res, b� � � 0. (9)

For steady circulation, Eq. (9) further simplifies to

J��res, b� � � 0, (10)

which implies that �res and b� are functionally related, and therefore residual circulation
below the mixed layer is directed along the isopycnal surfaces. Using (1) and (7), we
rewrite the momentum balance in terms of �res as follows:

�res � �
	


f
� �*. (11)

Of course, the adiabatic assumption becomes inadequate in the mixed layer (�hm �
z � 0) where isopycnals become vertical (b� z � 0), whereas the vertical component of
eddy flux tends to be suppressed by the presence of the surface (webe � 0). Integration of
the buoyancy equation (4) over depth of the upper vertically homogeneous layer – see
Marshall and Radko (2003) – results in

hm

�bm

�t
� �res�y, �hm�

�bm

�y
� B̃, (12)

where bm is the mean mixed layer buoyancy and

B̃ � B � �
�hm

0 �

�y
vebe dz.
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Eq. (12) indicates that the total buoyancy forcing in the mixed layer (B̃) includes the direct
air-sea buoyancy flux (B) and a contribution from the diabatic eddies:

Beddy � ��
�hm

0 �

�y
vebe dz � hmK

�2bm

�y2 . (13)

However, estimates in Radko and Marshall (2006), made in the context of the ACC,
suggest that the explicit buoyancy forcing B greatly exceeds Bedd y. The diabatic eddy
fluxes play even lesser role on planetary scales – the primary focus of this paper, which can
be readily ascertained by the scaling analysis of the diabatic term (13). Using L � 10,000
km, �b � 0.02 ms�2, K � 1000 m2s�1, we estimate Bedd y � 2 � 10�11 m2s�3, which
is less, by two orders of magnitude, than the typical air-sea buoyancy flux B � 2 �

10�9 m2s�3 (equivalent to the heat flux of �10 Wm�2).2 Therefore in the following
discussion we will mostly associate B̃ with the direct air-sea buoyancy fluxes.

A substantial difference in formulation of the present model and R05 is related to the
surface boundary conditions. While in R05 the surface buoyancy and air-sea fluxes have
been prescribed, in reality they may be controlled by the dynamics of oceanic circulation,
and therefore we now consider alternative, and perhaps more physical, boundary condi-
tions. The surface buoyancy is relaxed to a target buoyancy distribution b*, which we
assume is set through the ocean-atmosphere interaction, and the buoyancy flux is
parameterized accordingly (Haney, 1971):

B̃ � ��bm � b*�. (14)

There is a considerable controversy with regard to the magnitude of the relaxation
parameter; the values of  used in the literature span more than two orders of magnitude.
The choice of  is dictated by its interpretation in a particular model. When the restoring
boundary condition is introduced in the numerical simulations mainly to bring the
Sea-Surface Temperature (SST) into the agreement with observations, the value of the
relaxation parameter is usually taken to be �10�5 m/s, which corresponds to the relaxation
time scale of approximately two months. On the other hand when the climate model
attempts to represent the atmosphere which itself adjusts to the changes in the SST, the
value of relaxation parameter is two orders of magnitude less (e.g., Kamenkovich et al.,
2003). Since in our model it is essential to take the atmospheric feedback into account, we
shall use  � 10�7 m/s.

We also use an interactive wind stress, which in our model is affected by the SST. While
details of the interaction between winds and SST are still debated in the literature, here we
adopt probably the simplest model for the surface wind stress:

2. A reviewer pointed out that although diabatic eddy fluxes in the mixed layer may be weak relative to the
air-sea fluxes, the possibility exists that they influence the flow pattern indirectly, for instance by affecting the
mixed layer depth.
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 � 	a � A
�bm

�y
, (15)

which crudely represents effects of the thermodynamically induced atmospheric pressure
gradients (Lindzen and Nigam, 1987). The empirical coefficient A depends on the latitude;
it is positive in the Northern hemisphere and negative in the Southern. The physical
motivation for using (15) is that the near surface air temperature is affected by the SST, and
therefore oceanic temperature gradients will be reflected in the atmosphere. The meridional
atmospheric temperature gradient, in turn, requires – through the thermal wind balance –
the corresponding increase in zonal surface wind speed, and thus in the wind stress as well.
These dynamics are apparently at work in the vicinity of major oceanic fronts such as the
Gulf Stream (Wai and Stage, 1989) and in the Southern Ocean, where the wind stress is
high and well correlated with the path of the ACC (e.g., Radko and Marshall, 2006).

As a result of the assumed parameterization (15), the Ekman streamfunction below the
mixed layer �� � �(	
/f ) is also affected by the surface buoyancy distribution:

�� � �� a � A0

�bm

�y
, (16)

where A0 � [A( y)/f( y)] � 0. Since the details of variation of the empirical coefficients in
(15) and (16) with latitude (and/or other flow characteristics) are uncertain, for the purpose
of our idealized theory we suppose that A0 � const, which makes the problem analytically
tractable. Using the typical values for the ACC suggested in Table 1 of Marshall and Radko
(2003): Ly � 2000 km, �b � 7 � 10�3 ms�2, �	
 � 10�4 m2s�2, we estimate the
coefficient of the assumed wind stress law (15) to be A � 3 � 104 m2 and therefore A0 � 3 �

108 m2s. This value is consistent with the strength of the feedback of SST on wind used by
Marshall et al. (2001).

3. Symmetric configuration

Our starting point is a steady symmetric configuration shown in the schematic diagram
in Figure 1a. All the surface boundary conditions are assumed to be symmetric with respect
to the equator (y � 0):

b*�y� � b*��y�, 	a�y� � 	a��y�,

and therefore a possible solution of the model equations represents a flow pattern (Fig. 1a)
in which the circulation in the Northern hemisphere is a mirror image of the circulation in
the Southern. The equator acts as a rigid boundary, precluding all inter-hemispheric
exchanges of buoyancy and volume. Consequently, the residual streamfunction, as well as
mean and eddy induced, is zero at y � 0. Eq. (10) implies that �res does not vary along the
isopycnal surfaces, and, since all isopycnals in Figure 1a intersect the equator,

�res�y, z� � 0. (17)
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Condition (17) is a consequence of the model geometry – adiabatic interior dynamics
confines the residual flow to the isopycnal surfaces, and the assumed symmetry of our
steady state does not permit the lateral flow across the equator. Eqs. (12) and (17) imply
that the air-sea flux also vanishes in this case, and therefore the surface buoyancy – see Eq.
(14) – is fully relaxed to its target distribution:

bm�y� � b*�y�.

For the symmetric state with vanishing �res, the interior momentum equation (11)
reduces to the balance is between the Eulerian and eddy induced circulation:

�* � Ks � ��� �
	


f
, (18)

which determines the slope of isopycnal surfaces s:

s �
	


Kf
. (19)

The slope in (19) depends only on the meridional coordinate, and therefore depth of an
isopycnal surface is given by an integral

z � �
y0

y

s�y��dy�, (20)

where y0 is the location of the outcrop of this isopycnal. The derivation is simplified by
introducing the indefinite integral of the slope,

S�y� � � s�y�dy (21)

which is a function only of the given wind stress. Using (21), we rephrase the statement
that the buoyancy is constant along the curves defined by (20) as follows:

b� � F�z � S�y��, (22)

where F, at this point, is an arbitrary function. Note that the general form of the buoyancy
field in (22) implies that b� z (as well as all higher derivatives of buoyancy in z) is also
constant along the isopycnal surfaces. To determine F, the interior buoyancy b� is matched,
at z3 0, with the surface buoyancy bm( y):

F��S�y�� � bm�y� 3 F�r� � bm�S�1��r��, (23)

an expression valid for any r in the interval 0 �r � max (�S). The surface buoyancy in
this symmetric state equals the target buoyancy distribution b*, which is assumed to be
known.
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To illustrate how the analysis in (19)–(23) can yield explicit analytical solutions for the
buoyancy distribution in the interior, we now assume simple, easily integrable surface
boundary conditions:

� b*(y) � bmax�1 �
y2

L2�
f � �y

	0 � 	a � A0 f
�b*

�y
� 	max�y

L�
2

,

(24)

which are plotted in Figure 2. 2L is the meridional extent of our domain and 	0 is the total
wind stress (15) in the symmetric configuration which includes the SST feedback
component.

Next, these boundary conditions and the governing equations are nondimensionalized
using bmax as a unit of buoyancy, L as a unit of length, 	max as a unit of wind stress, and
	max/�L as a unit of streamfunction. We convert to nondimensional variables by
substituting

�
(y, z) 3 (y, z)L
b 3 bmaxb

(�� , �*) 3 (�� , �*)
	max

�L
	
 3 	
	max,

(25)

Figure 2. The assumed equilibrium meridional distribution of winds (top) and surface buoyancy
(bottom).
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and the following discussion will be phrased in terms of nondimensional variables. In
particular, the expression for the isopycnal slope in (19) becomes s � (	max/K�L) y, and
(22) reduces to

b� � F�z �
	max

K�L

y2

2�. (26)

Matching (26) with the surface buoyancy bm � b* � (1 � y2) at z � 0 determines the
function F and thus the interior buoyancy:

b� � 1 � y2 � z
2K�L

	max
, for 1 � y2 � z

2K�L

	max
� 0. (27)

Eq. (27) implies that the vertical buoyancy gradient is spatially uniform:

b� z �
2K�L

	max
. (28)

The foregoing symmetric solution reflects a balance between the Eulerian circulation,
acting to overturn isopycnals, and baroclinic eddies which tend to flatten them out. These
dynamics are frequently realized in zonal average models (Radko and Marshall, 2003;
Olbers and Visbeck, 2005; R05; among others). The stratification in such configurations
depends strongly on the magnitude of the eddy transfer coefficient K, and is sensitive to the
details of the assumed eddy transfer parameterization. In our case, for instance, expression
(28) implies that the thermocline depth increases linearly with the strength of wind stress.
This prediction finds support in the numerical and laboratory studies of quasi two-
dimensional eddying flows (e. g., Marshall et al., 2002; Karsten et al., 2002). However, it
should be noted that the classical thermocline theory formulates an alternative model of
stratification which does not include eddy transfer and which is thought to be more relevant
for the zonally blocked basins (Luyten et al., 1983).

The solution in (27) and (28) should also be interpreted cautiously because it represents
the ocean state without overturning circulation. For instance, the maximum sea-surface
temperature will be undoubtedly reduced by the action of the MOC. Therefore in
estimating values of bmax relevant for the ocean, we shall proceed under assumption that
the surface buoyancy in the absence of overturning is of the same order but somewhat
higher than in its presence.

4. Stability of the symmetric state

While Eq. (27) provides a self-consistent solution with zero residual circulation, a
question arises with regard to its stability. The physical argument, suggesting that
symmetric configurations such as this are likely to be unstable, is illustrated in Figure 1.
Consider the perturbed state shown in Figure 1b which is slightly asymmetric with respect
to the equator. The buoyancy is slightly decreased in the high- and mid-latitudes of the
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Southern hemisphere and increased, by the same amount, in the Northern hemisphere;
buoyancy at the equator is the same as in Figure 1a. As a result, the buoyancy gradients
increase in the Southern hemisphere, and reduce in the Northern hemisphere. According to
(15), larger buoyancy gradient in the South also increases the wind stress; winds in the
Northern hemisphere decrease respectively. The stronger wind stress in the Southern
hemisphere, in turn, leads to the increased mean Eulerian overturning (indicated by the
blue arrows in Fig. 1), which advects cold water in the Ekman layer from the polar regions
and thereby further decreases the buoyancy in the Southern hemisphere. In the Northern
hemisphere, on the other hand, reduction in the strength of the equatorward Ekman flux of
cold water further increases the buoyancy. This positive feedback implies the instability of
the symmetric state in Figure 1a. Clearly, the proposed instability mechanism requires a
sufficiently strong interaction between the wind stress and the SST and hence sufficiently
large A in Eq. (15). On the other hand if A is low, the symmetric state is expected to be
stable, in which case the surface buoyancy just gradually relaxes to its equilibrium
distribution b*.

To establish conditions for this instability, we now perform the linear stability analysis.
Consider the perturbed state which is given by the sum of the basic symmetric solution
discussed in section 3 (here denoted by the subscript ‘0’) and a small normal mode
perturbation denoted by primes:

� b � b0 � b�
�� � �� 0 � �� �
�* � �*0 � �*�,

(29)

and suppose that the buoyancy perturbation is anti-symmetric with respect to the equator:
b�( y) � �b�(�y). Critical values of the environmental parameters at the point of
marginal stability are obtained next by requiring that the growth rate of the perturbation is
zero, and thus the total flow field (29) is in a steady state �/�t � 0.

The perturbation of the mean streamfunction �� � is related to b� by the (linear) Eq. (16),
which in our nondimensional units reduces to

�� � �
bmaxA0�

	max
·

�b�m
�y

. (30)

To simplify notation, we denote the nondimensional combination of parameters in (30) as
a � (bmaxA0�/	max). Computing �*� in terms of b� requires linearization of the eddy
closure (8):

	max

�L
�* � �K

b0y � b�y
b0z � b�z

,

and results in
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�*� � �
KL�

	maxb0z
·

J�b�, b0�

b0z
� �

1

2

J�b�, b0�

b0z
. (31)

Eq. (31) is greatly simplified by rewriting it with b0 (rather than z) as a vertical coordinate,
in which case [ J(b�, b0)/b0z] � (�/� y)b��b0�const. To stress that this expression pertains
to the isentropic gradients, we introduce the following notation:

d

dl
� �

�

�y
� � s0

�

�z
� (32)

and rewrite (31) as:

�*� � �
1

2

db�

dl
. (33)

Recalling that �� 0 � �*0 � 0, we linearize the steady mixed layer buoyancy equation (12)
and arrive at

��res�y, �hm�
�bm0

�y
� �

�L2

	max
b�m. (34)

where ��res � �� � � �*�. Linearization of the interior buoyancy equation (10) yields:

J���res, b0� � 0, for z � �hm (35)

which implies that ��res is constant along the zero order isopycnals.
Next, we integrate (33) along the isopycnals from the outcrop in the Southern

hemisphere to the outcrop in the Northern:

�
�y

y

�*�dl � �
�y

y

���res � �� ��dl � �
1

2
�b�m�y� � b�m��y�� � �b�m. (36)

Since ��res is constant on isopycnals,

�
�y

y

��resdl � 2y��res, (37)

and since �� � is independent of z , Eq. (30) yields

�
�y

y

�� �dl � 2ab�m. (38)

Combining Eqs. (36)-(38), we arrive at

��res � �a �
1

2� b�m
y

. (39)
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Our next step is to eliminate the perturbation variables in (34) and (39), which yields the
sought after critical condition for the stability of the basic state:

�a �
1

2� 1

y

�bm0

�y
� �

�L2

	max
. (40)

For the basic field in (27), this condition further reduces to

2bmaxA0�

	max
� 1 �

�L2

	max
. (41)

The symmetric state is unstable as long as the thermal feedback on the wind stress is
sufficiently strong (large A0), whereas the relaxation towards the target buoyancy distribu-
tion b* (large ) tends to stabilize the flow, and therefore conditions for its stability/
instability are as follows:

�
2bmaxA0�

	max
� 1 �

�L2

	max

unstable

2bmaxA0�

	max
� 1 �

�L2

	max

stable.

(42)

According to the estimates of typical oceanic parameters in Section2, the first inequality in
(42) is satisfied, which implies the instability of the symmetric equilibrium configuration
with zero residual circulation.3 Note that the decrease in surface buoyancy variation (bmax)
tends to stabilize the flow. The latter effect becomes essential for the nonlinear equilibra-
tion of this instability, to be discussed next.

It is also interesting to note that, somewhat surprisingly, stability condition (42) does not
involve the eddy transfer coefficient K. At first, one is tempted to interpret this result as
indication that eddies are not dynamically significant for destabilization of the symmetric state.
However, such an interpretation would be flawed. The eddy transport is, in fact, critical for the
subsurface inter-hemospheric buoyancy exchange in our model and the stability condition
which is independent of K can be rationalized as follows. The lateral eddy transfer of volume in
each layer bounded by two isopynals is proportional to the lateral variation in layer thickness h:

hv* 	 K
�h

�y
. (43)

3. With regard to the accuracy of all estimates of the stability characteristics of the MOC in this paper, it should be
mentioned that there are two key parameters in our model – the relaxation parameter  and the wind stress feedback
coefficient A0 – whose values are poorly constrained by observations. This uncertainty, however, is not expected to
affect major qualitative conclusions that emerge from our analysis: the wind stress feedback and buoyancy relaxation
undoubtedly have opposing effects on the stability of the symmetric solution; these processes are comparable in
magnitude and have significant ramifications for establishment and maintenance of the overturning circulation.

2007] 99Radko: Meridional Overturning Circulation in upper ocean



The stratification in our model is set by a balance between the eddy transfer and Ekman
pumping and therefore the layer thickness is inversely proportional to K, as indicated in Eq.
(28), i.e., K � (1/h). Thus, the total eddy flux in each density layer (43) is independent of K and
controlled by the relative variation in layer thickness, which, in turn, is determined by the
surface buoyancy distribution at the outcrops. Since eddies appear in our stability consider-
ations only in terms of the lateral subsurface transport (43), their response to the changes in
surface conditions – and thus their influence on the stability of the symmetric state – is largely
independent of K.

5. Nonlinear equilibration

Since the foregoing analysis demonstrated that the symmetric basic state with zero
residual circulation is unstable, we now inquire into the consequences of this instability for
the structure of the flow field. In order to analytically describe the pattern of circulation in
the resulting new asymmetric states, we now develop a weakly nonlinear instability theory
by considering slightly supercritical parameters. Eq. (41) implies that the growth rate of the
perturbation in (29) is zero for the critical value of a � (bmaxA0�/	max) given by

acr �
1

2 �1 �
�L2

	max
�. (44)

The relevant small nondimensional parameter ε which measures the strength of the
instability is here defined as follows:

ε � 
a � acr. (45)

To determine the new equilibrium state(s), we now expand the governing equations in
powers of ε, a technique which is routinely used in nonlinear instability theories (e.g.,
Malkus and Veronis, 1956). Thus, we search for a steady solution using the power series:

�
b� � b0 � εb1 � ε2b2 � ε3b3 � . . .
�* � �*0 � ε�*1 � ε2�*2 � ε3�*3 � . . .
�� � �� 0 � ε�� 1 � ε2�� 2 � ε3�� 3 � . . .
a � acr � ε2.

(46)

The zero order components in (46) represent the symmetric basic state in Section 3, and at
the first order in ε we recover all the linear balances discussed in Section 4. In particular,
(35) implies that �1res � �� 1 � �*1 is constant along the zero order buoyancy surfaces.
Since the buoyancy field is dominated its symmetric zero order component, the scales for
the thermocline depth and stratification in the resulting asymmetric solutions are still given
by Eqs. (27) and (28).

It is interesting to note the symmetry properties of our system. While the first order
buoyancy field is anti-symmetric about the equator and the streamfunctions (mean, eddy
induced and residual) are symmetric, their nonlinear interaction generates, at the second
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order, symmetric buoyancy and anti-symmetric streamfunctions. Thus, the first and the
second order terms are orthogonal. This prevents equilibration of the instability at the
second order and leads us to consider the third order terms, which (like the linear first order
components) have an anti-symmetric buoyancy field and symmetric streamfunctions. As
our nonlinear instability theory demonstrates, it is indeed the third order terms that
ultimately arrest the linear growth of the instability.

Many details of the weakly nonlinear analysis are relegated to Appendix A, and the
expansion procedure is only briefly outlined here as follows. The power series (46) are
substituted into the governing equations (8)–(12), and the terms of same order in ε are collected.
Thus, the first order balance describes the linear growth of the perturbation. Combining the
O(ε2) terms, we express the second order components (b2, �2res) in terms of the first order
buoyancy in Eqs. (A12), (A17). At the third order [Eqs. (A29), (A30)], it is possible to
eliminate the third order quantities (b3, �*3, �� 3) in favor of first and second order terms and
thereby derive a solvability condition (A32) for the low order components. This solvability
condition is most conveniently expressed in terms of the first order surface buoyancy b1m(y),
which provides an explicit nonlinear constraint on the growth of the unstable perturbation
(A35). For the fully equilibrated steady state, the solvability condition reduces to:

�acr � 0.5��b1m
3

y4 �
1

2

b1m
2

y2

�2b1m

�y2 �
b1m

y2 ��b1m

�y � 2

� 2
b1m

2

y3

�b1m

�y � � 2b1m � 0. (47)

The weakly nonlinear theory also offers a simple physical explanation for the nonlinear
equilibration of a growing mode. As shown in Appendix A [see Eq. (A18)] nonlinearity
descreases the surface buoyancy in the equatorial region:

b2m�0� � �
1

2

�1res
2

�acr � 0.5�2 � 0. (48)

This reduction of the surface buoyancy has an effect of suppressing the instability, as (42)
indicates, and thus effectively brings the system towards the marginally stable regime.

In that which follows, the amplitude equation (47) is solved subject to the boundary
conditions:

b1m��1� � b1m�1� � 0, (49)

and insisting on the antisymmetry of b1m with respect to the equator:

b1m�y� � �b1m��y�. (50)

6. Solution of the amplitude equation

Eq. (47) is solved for b1m( y) as follows. First, we rescale the surface buoyancy using

b̃�y� � 
acr � 0.5 · b1m�y�. (51)
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The resulting equation for b̃( y) becomes

b̃3

y4 �
1

2

b̃2

y2

�2b̃

�y2 �
b̃

y2 ��b̃

�y�
2

� 2
b̃2

y3

�b̃

�y
� 2b̃ � 0. (52)

Note that Eq. (52) does not contain any external parameters. Thus, the dependence of our
solution on the amplitude of the external forcing can be described analytically – it enters
the problem only in the form of coefficients used for rescaling the buoyancy and
streamfunction in (25) and (51).

To solve (52), we recover the time dependence by adding the time derivative term (as
shown in Appendix A, this is equivalent to retaining the prognostic term in the mixed layer
but ignoring it in the interior):

�b̃

�t
�

b̃3

y4 �
1

2

b̃2

y2

�2b̃

�y2 �
b̃

y2 ��b̃

�y�
2

� 2
b̃2

y3

�b̃

�y
� 2b̃. (53)

Addition of this extra term makes it possible to integrate Eq. (53) in time numerically, and
the resulting steady state solutions satisfy (52) as well. Eqs. (53), (49), (50) have been
solved using a pseudo-spectral method in which b̃ was expanded in sin(�yn), n � 1,
2, . . . functions, and its Fourier coefficients were integrated in time (e.g., Radko and Stern,
2000). Calculation was initialized by a small perturbation in a form of the fundamental
harmonic [b̃ � 0.01 sin(�y)], and the time integration resulted in a steady state solution
shown in Figure 3. This particular solution represents a circulation in which the Northern
hemisphere is warmer than the Southern – the situation illustrated schematically in Figure
1b. It is noted, however, that Eq. (52) is invariant with respect to the change in sign of b̃.
Thus, in addition to the steady solution in Figure 3, its “mirror image” configuration (b̃3
�b̃) is equally possible. In the second solution the Northern hemisphere is colder than the
Southern, direction of the meridional overturning is reversed, but the amplitude of
perturbation is exactly the same. To be specific, we shall focus on the northern-sinking
solution in Figure 3.

To determine whether our model yields plausible values of heat flux and meridional
overturning for typical oceanographic parameters, we continue our discussion in terms of
dimensional variables. In particular, the surface buoyancy flux and residual circulation
immediately below the mixed layer are related to b̃ as follows:

�
B � �(b � b*) � �bmax
acr � 0.5 εb̃

�res �
B

b0y
�

L2
acr � 0.5 εb̃

2y
.

(54)

While the foregoing theory describes the limit ε3 0, it is of interest to estimate values of B
and �res by extrapolating (54) to finite values of ε realized in the ocean. Using L � 107 m,
� � 10�11 m�1s�1, A0 � 3 � 108 m2s,  � 10�7 m/s, bmax � 0.05 ms�2, we arrive at a �
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1.5, acr � 1, ε � 0.7, and therefore (54) reduces to B � �2.5 � 10�9 m2s�3 � b̃ and
�res � 2.5 � 106 m2s�1 � (b̃/y). The surface buoyancy flux and residual streamfunction at
the bottom of the mixed layer are plotted, as a function of y, in Figure 4. It is interesting to
note that the buoyancy flux of y, in Figure 4 corresponds to the air-sea heat flux of �10
W/m2—the same order as observed.

The magnitude and pattern of the MOC is indicated in Figure 5 in which the residual
streamfunction (�res) is multiplied by the zonal scale (circumference) of our aqua planet
at mid-latitudes (Lx � 3 � 107 m) and plotted as a function of y and z. Its maximum value
gives the total strength of the meridional overturning:

V � max��res�Lx � 10 Sv. (55)

If we assume that the buoyancy flux is dominated by the heat flux, then it also becomes
possible to estimate the total amount of heat that enters the ocean in the Southern
hemisphere, is transported across the equator by the residual flow and eventually is
released into the atmosphere in the Northern hemisphere:

H � Lx �
�L

0

B

Cp

g�
dy � 0.7 · 1015 W, (56)

where Cp � 4000 J kg�1 K�1 is the specific heat of water, � � 2 � 10�4 K�1 is the thermal
expansion coefficient and 
 � 1000 kg m�3 is the density.

Values of the MOC and heat transport in (55) and (56) are broadly consistent with the
current oceanographic estimates (e.g., Boccaletti et al., 2005), which lends credence to our
theory as a plausible conceptual model of the upper overturning cell in the ocean.

Figure 3. The steady solution of Eq. (53).
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Figure 4. The air-sea buoyancy flux (top) and the residual streamfunction immediately below the
mixed layer (bottom) plotted as a function of y.

Figure 5. The vertical (y,z) section of the meridional overturning by the (leading order) residual
circulation for bmax � 0.05 ms�2, 	max � 10�4 m2s�2, K � 2000 m2s�1. The residual
streamfunction is multiplied by Lx to represent the net strength of the overturning circulation and
measured in Sv. The contour interval is 1 Sv.
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7. Discussion and conclusions

This study presents a two-dimensional analytical model of the Meridional Overturning
Circulation in the upper ocean. Mechanical forcing by winds and thermodynamic forcing
by air-sea buoyancy fluxes are taken into account, as well as effects of mesoscale eddies
which are discussed in terms of the residual-mean theory (Andrews and McIntyre, 1976).
The oceanic circulation is represented by the semi-adiabatic model; all diabatic processes
are assumed to operate in the upper mixed layer, whereas the circulation in the interior is
fully adiabatic. We adopt an interactive model of the atmosphere, in which the air-sea heat
flux and wind stress respond to the changes in the sea-surface temperature. One of the
steady solutions found represents a symmetric (about the equator) configuration with no
inter-hemispheric exchange flows and heat transfer. However this solution is shown to be
linearly unstable – an effect which we attribute to the positive feedback between the
atmospheric winds and the oceanic meridional circulation. The flow resulting from this
instability can be thought of as a form of the horizontal convection (Stern, 1975) that is, in
our case, driven by both mechanical and thermodynamic forcing.

The instability transforms the symmetric basic state into an asymmetric configuration
with finite cross-equatorial volume and heat fluxes. The magnitude and pattern of
circulation in the resulting steady states are explained using an asymptotic expansion in
which ε – the parameter controlling stability of the basic state – is small. The weakly
nonlinear instability theory demonstrates that the growth of the unstable modes is arrested
when the strength of the meridional overturning becomes sufficient to substantially reduce
the surface buoyancy in the equatorial region, which has a stabilizing effect on the
circulation. Extrapolation of the asymptotic results to the oceanographically relevant
parameter range suggests the equilibrium overturning of �10 Sv and the heat flux of
�0.7 PW, not unlike values that are usually cited for the oceanic MOC.

Since the surface boundary conditions in our model are symmetric about the equator,
there are two equally possible stable solutions which have the same magnitude but the
opposite sense of circulation. One mode represents the northward flow in the diabatic upper
layer, sinking in high northern latitudes, southward return flow at depth and upwelling in
the South (see Fig. 1b), whereas the second solution – the mirror image of the first one – is
characterized by the southern-sinking. The thermocline cell of the meridional circulation in
the Atlantic is associated with the southward flow of the upper North Atlantic Deep Water
and the northward return of the warmer upper thermocline water masses. Winds in the
Northern hemisphere are considerably weaker and SST is higher than in the Southern, all
of which is consistent with the predicted dynamics of the northern-sinking solution in our
model. Such a qualitative similarity raises an intriguing question of how to explain the
preference for the northern-sinking meridional circulation in the Atlantic – the question
which is beyond the scope of this study.

There are a number of uncertainties in the presented theory, particularly with regard to
the extent two-dimensional models can possibly reflect the rich dynamics of the oceanic
circulation. Mid-latitude circulation is characterized by gyres and intense western bound-
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ary currents; the thermocline theory (Luyten et al., 1983) emphasizes significance of
Sverdrup dynamics. All these three-dimensional effects are not represented by our
solutions, aside from a crude scale analysis (Appendix B) of their potential influence on our
stability considerations. Completely ignored are effects of the complicated geometry of the
Atlantic Ocean, also known to affect the meridional overturning (Sijp and England, 2004;
Radko and Marshall, 2006). Finally, the wind feedback in our model is considered in
isolation from the more traditional thermodynamic forcing mechanisms of the thermoha-
line circulation (Stommel, 1961); presumably, in the ocean these modes nonlinearly
interact to shape up the meridional overturning. Nevertheless, the ability of our model to
account for a significant fraction of the total meridional heat flux and volume transport is
suggestive. It implies that the positive feedback between winds and oceanic overturning
may be one of the key mechanisms controlling the magnitude of the cross-equatorial
fluxes, the mechanism which has not been considered by the extant theories of the MOC.

Other principle conclusions of this study include (i) the possibility of a finite meridional
overturning in the limit of zero diapycnal mixing below the upper mixed layer and (ii) the
possibility of a significant interior flux of properties across the equator which is driven
entirely by eddies. In connection with the latter proposition we note that the large scale
linear vorticity balance (�v� � fw� z) requires vanishing of the meridional velocity in the
proximity of the equator. Thus, the inter-hemispheric exchange flows of water masses in
the interior of the ocean – outside of the swift and narrow western boundary currents – may
be primarily eddy induced (Edwards and Pedlosky, 1998). Our explicit analytical solutions
of the governing (two-dimensional) equations of motion support these conjectures.
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Science Foundation (grant no. OCE0623524) is gratefully acknowledged.

APPENDIX A

Solvability condition for the weakly nonlinear instability theory

The amplitude equation for b1m is obtained by expanding the steady state governing
equations in powers of ε, collecting the terms of the same order, and, finally, formulating a
solvability condition at O(ε3) as follows.

a. Eddy and mean streamfunctions

The (nondimensional) expression of the eddy streamfunction in terms of buoyancy field
(8) is written as

	max

�L
�* �

	max

�L
��*0 � ε�*1 � ε2�*2 � ε3�*3 � . . .� � �K

by

bz

� �K
b0y � εb1y � ε2b2y � ε3b3y � . . .

b0z � εb1z � ε2b2z � ε3b3z � . . .

106 [65, 1Journal of Marine Research



Collecting the terms of the same order and using (28), (32) results in:

�*1 � �
1

2

db1

dl
, (A1)

�*2 � �
1

2 �db2

dl
�

db1

dl

b1z

b0z
�, (A2)

�*3 � �
K�L

	max

b0y

b0z
�b3y

b0y
�

b2y

b0y

b1z

b0z
�

b1y

b0y

b1z
2

b0z
2 �

b1y

b0y

b2z

b0z
� 2

b1z

b0z

b2z

b0z
�

b3z

b0z
�

b1z
3

b0z
3 �. (A3)

Eq. (A3) is simplified using (32), (A1), and (A2) as follows:

�*3 � �
1

2 �db3

dl
�

b1z

b0z

db2

dl
�

b2z

b0z

db1

dl
�

b1z
2

b0z
2

db1

dl � � �
1

2 �db3

dl
� 2�*2

b1z

b0z
� 2�*1

b2z

b0z
� (A4)

The mean streamfunction is treated similarly; the nondimensional versions of Eqs. (7), (16)
are expanded in powers of ε and the same order terms are collected:

�
�� 1 � acr

�b1m

�y

�� 2 � acr

�b2m

�y

�� 3 � acr

�b3m

�y
�

�b1m

�y

(A5)

b. First order balances

Eq. (A1) is added to the first equation in (A5) to provide an explicit expression for the
first order residual streamfunction:

�1res � acr

�b1m

�y
�

1

2

db1

dl
. (A6)

Next, Eq. (A6) is integrated along the isopycnals, on which �1 res is uniform, starting from
the equator (where b1 � 0):

�1resy � acrb1m �
1

2
b1, (A7)

and therefore

b1z � �2
��1res

�z
y. (A8)

In the mixed layer Eq. (A7) reduces to

�1res � �acr �
1

2� b1m

y
. (A9)
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c. Second order balances

The second order balance of the steady interior buoyancy equation (9) is

J��2res, b0� � J��1res, b1� � 0,

which we rewrite with b0 as a vertical coordinate:

d

dl
�2res �

1

b0z
J��1res, b1� � 0. (A10)

Using (A7) we further simplify (A10) as follows:

d

dl
�2res �

2acr

b0z

�b1m

�y

��1res

�z
�

2�1res

b0z

��1res

�z
. (A11)

Recalling that �1res, ��1res/� z, and b0z are all constant along the zero order buoyancy
surfaces, we integrate (A11) starting from the equator:

�2res �
2acrb1m

b0z

��1res

�z
�

2�1res

b0z

��1res

�z
y �

b1

b0z

��1res

�z
. (A12)

Combining Eqs. (A2) and (A8), we arrive at

�*2 � �
1

2 �db2

dl
�

4

b0z
�*1

��1res

�z
y�, (A13)

which is then further simplified using (A5) and (A7) as follows:

b0z

2

db2

dl
� b0zacr

�b2m

�y
� 4�1res

��1res

�z
y � 2acr

�

�y
�b1my�

��1res

�z
(A14)

The second order balance of the mixed layer buoyancy equation (12) is

�2res

�b0m

�y
� �1res

�b1m

�y
� �

�L2

	max
b2m � �1 � 2acr�b2m, (A15)

or

�
2y2

�acr � 0.5�b0z

�

�z
��1res

2 � �
�1res

2

acr � 0.5
� �1 � 2acr�b2m. (A16)

Integrating (A14) from an arbitrary point in the interior ( y, z) along the zero order
isopycnal surface to the outcrop ( y0, 0) and then using (A16) reduces it to:

b2 �
�1res

2

acr � 0.5
�

2

b0z

��1res

�z
�1res

y0
2

acr � 0.5
� 2acrb2m�y� �

2

b0z

��1res

�z
yb1�y�. (A17)

At the equator in the mixed layer ( z � 0, y � 0) Eq. (A17) reduces to
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b2m�0� � �
1

2

�1res
2

�acr � 0.5�2 � 0, (A18)

implying that nonlinear effects tend to decrease buoyancy in the central equatorial
regions. As discussed in Section 5, this property is an essential element for the
mechanism of equilibration of the MOC in our model. Taking the z-derivative of (A17)
results in:

b2z �
2

acr � 0.5

�

�z
��1res

2 � �
1

b0z

�2

�z2 ��1res
2 �

y0
2

acr � 0.5
�

�

�z � 2

b0z

��1res

�z
yb1(y)� (A19)

d. Third order balances

The third order balance of the steady interior buoyancy equation (9) is

J��3res, b0� � J��2res, b1� � J��1res, b2� � 0,

which we rewrite with b0 as a vertical coordinate:

d

dl
�3res �

1

b0z
�J��2res, b1� � J��1res, b2�� � 0. (A20)

Using (A12), we simplify (A20) to

d

dl
�3res �

1

b0z

��1res

�z

db2

dl
�

b1

b0z
2

�2�1res

�z2

db1

dl
(A21)

Integrating (A21) along the zero order isopycnals from the equator results in:

�3res � �3res�y�0 �
1

b0z

��1res

�z
�b2 � b2�y�0� �

1

2b0z
2

�2�1res

�z2 b1
2, (A22)

which we rewrite as

�3res � �3res�y�0 � N�y�, (A23)

where

N�y� �
1

b0z

��1res

�z �2acrb2m � 2acrb2m(0) �
2

b0z

��1res

�z
yb1� �

1

2b0z
2

�2�1res

�z2 b1
2. (A24)

Eq. (A4) is rewritten as

�*3 � �
1

2

db3

dl
� M�y�, (A25)

where

M�y� � ��2res � �� 2�
b1z

b0z
� ��1res � �� 1�

b2z

b0z
. (A26)
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Thus, the residual circulation becomes

�3res � �3res�y�0 � N�y� � �*3 � �� 3 � �
1

2

db3

dl
� M�y� � acr

�b3m

�y
�

�b1m

�y
. (A27)

Integration of (A27) along the zero order isopycnals from the equator (y � 0) to the
outcrop ( y � y0) results in

�3res�y�0y0 � �
0

y0

N�y�dl � �
1

2
b3m�y0� � �

0

y0

M�y�dl � acrb3m�y0� � b1m�y0�, (A28)

which can be rewritten using (A23) as

�3res�y0�y0 � N�y0�y0 � �
0

y0

N�y�dl � �
1

2
b3m�y0� � �

0

y0

M�y�dl � acrb3m�y0� � b1m�y0�.

(A29)
The third order balance of the mixed layer buoyancy equation (12) is

�3res�y0�
�b0m

�y
� P�y0� � �1 � 2acr�b3m�y0�, (A30)

where

P�y0� � �1res

�b2m

�y
� �2res

�b1m

�y
. (A31)

Multiplying (A29) by a factor of two and adding (A30) leads to the cancellation of all third
order terms and thus provides a solvability condition for our nonlinear instability theory:

P�y0� � 2N�y0�y0 � 2 �
0

y0

�N�y� � M�y��dl � 2b1m�y0�. (A32)

Combining Eqs. (A8), (A19), (A29), (A26), we arrive at:

M � N �
2

b0z

��1res

�z

�

�y
�acr�b2m � b2m�0��y� �

1

b0z
��1res � acr

�b1m

�y �
� � 2

acr � 0.5

�

�z
(�1res

2 ) �
1

b0z

�2

�z2 (�1res
2 )

y0
2

acr � 0.5�
� ���1res

�z �2 4

b0z
2 �3�1resy

2 � acr

�

�y
[b1my2] � ��2�1res

�z2 � (A33)

�
2

b0z
2 �acr

2
�

�y
[b1m

2 y] � 2acr�1res

�

�y
[b1my2] � 3�1res

2 y2 .
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Remarkably, the combination of M and N which appears in (A32) reduces to a much more
compact expression:

2 �
0

y0

�N�y� � M�y��dl � 2N�y0�y0 �
b1m

b0z�acr � 0.5� � 1

b0z

�2

�z2 (�1res
2 )y0

2 � 2
�

�z
(�1res

2 )�
(A34)

Using Eqs. (A9), (A12), (A16), (A31) and (A34) we express the solvability condition
(A32) in terms of the first order surface buoyancy:

�acr � 0.5��b1m
3

y4 �
1

2

b1m
2

y2

�2b1m

�y2 �
b1m

y2 ��b1m

�y � 2

� 2
b1m

2

y3

�b1m

�y � � 2b1m � 0. (A35)

While the foregoing analysis is focused on the steady state amplitude equation, we
mention in passing that the time dependent problem can be treated similarly. The time
variable is non-dimensionalized using �L3/	max as a time unit and then rescaled as t �
ε�2t0, since the linear analysis indicates that the growth rate is proportional to (a � acr) �
ε2. As a result, prognostic terms appear explicitly only at O(ε2). Omitting details of the
derivation, we present the final result – the time-dependent solvability condition:

�

�t0 �hmb1m �
2	max

K�L ��(acr � 0.5)b1m

y2

3
� acry �

0

y

b1m(y�)dy� � acr �
0

y �
0

y�

b1m(y�)dy�dy���
(A36)

� �acr � 0.5��b1m
3

y4 �
1

2

b1m
2

y2

�2b1m

�y2 �
b1m

y2 ��b1m

�y �2

� 2
b1m

2

y3

�b1m

�y � � 2b1m.

APPENDIX B

Extension of the stability analysis to the three-dimensional circulation problem

A major uncertainty in application of our theoretical model to the oceanic MOC is
related to the assumed two-dimensional structure of the basic state. In some circumstances
(e.g., theory of the reentrant Antarctic Circumpolar Current) the two-dimensional formula-
tions are a natural and generally accepted starting point for discussion of the zero order
physics at play. However, in the context of the global inter-hemispheric oceanic circulation
such models should be interpreted with caution. The presence of meridional land barriers
results in several distinct features that are not represented in the aqua-planet dynamics.

First, the time-mean buoyancy distribution is zonally non uniform, and therefore
averaging of the buoyancy equation (4) at fixed latitude and depth reveals a contribution
from standing eddies. Since there is no reason to expect that standing eddies transfer
buoyancy according to the downgradient flux law (6), the eddy parameterization adopted in
our theory becomes questionable. This problem however can be alleviated by modifying

2007] 111Radko: Meridional Overturning Circulation in upper ocean



our definition of the zonal average. Rather than averaging along the depth and latitude, it is
more convenient to average along the latitude and time-mean buoyancy contours as, for
example, in Doos and Webb (1994). These isopycnal averages can be referenced to their
respective mean depths, and the eddy fluxes defined in this manner are by construction due
to transient rather than standing eddies.

The second difficulty is more fundamental. The presence of meridional barriers makes it
possible to maintain a net geostrophic meridional circulation driven by the pressure drop
between the eastern and western boundaries. In that which follows, we attempt to extend
our aqua-planet model to estimate the possible influence of this time-mean geostrophic
transport on the stability of the meridional overturning. The averaging of the geostrophic
y-momentum equation below the mixed layer results in

fv� �
�P

Lx
0
, (B1)

where �P( y, z) � PE � PW is a longitudinal variation in the dynamic pressure from the
eastern to western boundary.

Taking into account the zonal pressure variation in the subsurface zone is the only
generalization of the theory in Sections 3 and 4 that we consider at this stage. While the
accurate representation of the pressure term (B1) requires solving the full three-
dimensional circulation problem – thus having limited prospects of analytical tractability –
we now attempt a crude estimate of its impact on the stability of the symmetric
configuration. For that, we note that the meridional volume flux in the Ekman layer has to
be balanced by the flux of equal magnitude and opposite sign in the subsurface ocean.
Suppose that this return flux is uniformly distributed over a finite depth H, which represents
the scale of penetration of the wind driven circulation into the ocean interior:

v�H 	
	

f
. (B2)

For the basic state which is symmetric with respect to the equator, we still inevitably
arrive – even for the three-dimensional case – at the conclusion that the zonally averaged
residual circulation is zero. Thus, the surface buoyancy is fully relaxed to its target
distribution b*:

bm0 � b*�y�. (B3)

However inclusion of the zonal pressure variation (B1) in the model physics affects the
mean streamfunction (7):

�� � �� �z��hm
� �� p, (B4)

where �� p � ���hm

z v�dz� � (�hm � z/H)(	 /f ) � ( z/H)�� �z��hm
. Therefore specific

expressions for the flow field below the mixed layer in Secs. 3,4 do not directly apply to the
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three-dimensional case. We still insist, however, that the basic buoyancy field is symmetric
with respect to the equator:

b0�y, z� � b0��y, z�, (B5)

and examine its stability with respect to an anti-symmetric buoyancy perturbation:

b��y, z� � �b���y, z�. (B6)

The pressure driven mean circulation �� p contains an anti-symmetric basic component
(�� p0) and a symmetric perturbation (�� �p):

�� p0�y, z� � ��� p0��y, z�, �� �p�y, z� � �� �p��y, z�. (B7)

The linearized mixed layer equation (34) remains valid in three-dimensional case, and
therefore, generalization of the stability analysis in Section 4 yields:

2y��res�z��hm
� �

�y

y

�� �z��hm
dl � �

�y

y

�� �pdl � �
�y

y

�*�dl. (B8)

Adopting the same mixed layer model as in the two-dimensional case (Section 3), we use
(30) and (34) to eliminate �� �z��hm

and ��res�z��hm
and arrive at the marginal instability

condition:

2a �
1

b�m �
�y

y

�� �pdl � �
1

b�m �
�y

y

�*�dl �
�L2

	max
, (B9)

which differs from the corresponding condition (41) for the aqua-planet model by the
presence of the pressure driven flux �� �p and by a possibly different form of the eddy term
�*�. However, the eddy component is expected to be comparable in magnitude to its
two-dimensional counterpart. Thus, the main question which arises at this point is related
to the impact of the new pressure term [(1/b�m) ��y

y �� �pdl] on our stability considerations.
The scaling analysis yields

�� �p 	
z

H
�� ��z��hm

	
z

H
a

�b�m
�y

,

and therefore the ratio of the second and fist terms on the left hand side in (B9) is of the
order of z�/H, where z� is an average depth of the isopycnal surfaces. Thus, the influence of
the geostrophic mean transport on the stability of the symmetric configuration is minimal if
z� � H, but can be significant for z� � H. This result suggests that establishment and
maintenance of the meridional flow along deep isopycnals, reaching the maximum depth of
the wind driven circulation, can be significantly affected by three-dimensional effects.
Dynamics of the shallow isopycnals, on the other hand, is adequately captured by our quasi
two-dimensional aqua planet model.
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