UPGRADE TRANSONIC COMPRESSOR TEST RIG
DATA ACQUISITION SYSTEM

Belna, Thomas D.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/59667

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun
THESIS

UPGRADE TRANSONIC COMPRESSOR TEST RIG DATA ACQUISITION SYSTEM

by

Thomas D. Belna

June 2018

Thesis Advisor: Anthony J. Gannon
Co-Advisor: Garth V. Hobson

Approved for public release. Distribution is unlimited.
UPGRADE TRANSONIC COMPRESSOR TEST RIG DATA ACQUISITION SYSTEM

Abstract
This thesis presents an upgraded data acquisition system (DAS) for the transonic compressor test rig (TCR). The legacy DAS acquired and processed pressure, temperature, and rotational speed data. The data were mass averaged, and the performance of the compressor was measured and compared to that acquired by the legacy system. Total-to-total pressure ratio and isentropic efficiency versus corrected mass flow rate were compared at speeds of 70%, 80%, 85%, and 90% of the design speed. The legacy DAS was robust but outdated compared to currently available technology.

This thesis documents new hardware from National Instruments that was procured and integrated into the DAS. New software programming using commercial-off-the-shelf software (NI-MAX, DsaLink3, and MATLAB) for acquiring data, processing data, displaying results, and generating reports was also implemented and documented.

Data output files between the legacy DAS and new DAS were within reasonable tolerances and all functionality of the system was maintained.

Subject Terms
- transonic
- compressor
- data acquisition
- DAS
- TCR

Security Classification
- Unclassified

Number of Pages
135

Price Code
A
THIS PAGE INTENTIONALLY LEFT BLANK
UPGRADE TRANSONIC COMPRESSOR TEST RIG DATA ACQUISITION SYSTEM

Thomas D. Belna
Lieutenant, United States Navy
BS, Boston University, 2012

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2018

Approved by: Anthony J. Gannon
Advisor

Garth V. Hobson
Co-Advisor

Garth V. Hobson
Chair, Department of Mechanical and Aerospace Engineering
ABSTRACT

This thesis presents an upgraded data acquisition system (DAS) for the transonic compressor test rig (TCR). The legacy DAS acquired and processed pressure, temperature, and rotational speed data. The data were mass averaged, and the performance of the compressor was measured and compared to that acquired by the legacy system. Total-to-total pressure ratio and isentropic efficiency versus corrected mass flow rate were compared at speeds of 70%, 80%, 85%, and 90% of the design speed. The legacy DAS was robust but outdated compared to currently available technology.

This thesis documents new hardware from National Instruments that was procured and integrated into the DAS. New software programming using commercial-off-the-shelf- software (NI-MAX, DsaLink3, and MATLAB) for acquiring data, processing data, displaying results, and generating reports was also implemented and documented.

Data output files between the legacy DAS and new DAS were within reasonable tolerances and all functionality of the system was maintained.
TABLE OF CONTENTS

I. INTRODUCTION..1
 A. MOTIVATION ..1
 B. TRANSONIC COMPRESSOR TEST RIG DESIGN AND INSTRUMENTATION ..1

II. LEGACY DATA ACQUISITION SYSTEM ..5
 A. HP 75000 SERIES B VXI MAINFRAME ...5
 B. HPVEE SOFTWARE ..6
 C. 32-BIT WINDOWS XP COMPUTER ...7
 D. SYSTEM CONFIGURATION OVERVIEW ...7
 E. LEGACY DAS PERFORMANCE MAPS...8

III. NEW DATA ACQUISITION SYSTEM ..11
 A. REQUIREMENTS OF UPDATED DATA ACQUISITION SYSTEM ...11
 B. PROCUREMENT OF UPDATED DATA ACQUISITION SYSTEM ...11
 1. Digital Sensor Array ..12
 2. Chassis ...13
 3. Temperature Module ...13
 4. Rotational Speed Module ..14
 5. MATLAB Software ..15
 6. 64-bit WINDOWS 10 Computer ..15

IV. HARDWARE IMPLEMENTATION ..17
 A. DSA 3217 PRESSURE BRICK...17
 B. NI CDAQ 9188XT CHASSIS AND MODULES18
 C. SYSTEM CONFIGURATION OVERVIEW19

V. DATA REDUCTION...21

VI. HARDWARE COMMUNICATION ..23
 A. PRESSURE MEASUREMENT PROGRAM FLOW23
 B. TEMPERATURE MEASUREMENT PROGRAM FLOW25
 C. ROTATIONAL SPEED MEASUREMENT PROGRAM FLOW ...27
 D. COMBINED PROGRAM FLOW ..28
VII. RESULTS ...35

VIII. CONCLUSIONS AND RECOMMENDATIONS ...39
 A. CONCLUSIONS ...39
 B. RECOMMENDATIONS ...39

APPENDIX A. TEST INSTRUMENT PLACEMENT ...41

APPENDIX B. DATA REDUCTION ..45

APPENDIX C. INSTRUMENTATION SETUP ..47

APPENDIX D. INDIVIDUAL COMPONENT DESCRIPTION AND MATLAB CODE53
 A. MATLAB FUNCTIONS ...53
 B. DSA 3217 PRESSURE BRICK ..55
 C. NI 9214 THERMOCOUPLE MODULE ..57
 D. NI 9402 COUNTER-TOTALIZER MODULE ...59

APPENDIX E. DAS DESCRIPTION AND MATLAB CODE ..61
 A. DAS PROGRAM DESCRIPTION ..61
 B. DSA MATLAB CODE ...63
 1. Main.m ...63
 2. Pparameters_multibrick.m ..77
 3. Calc_Constants.m ...80
 4. Constants.m ...83
 5. Run_Startmulti.m ...84
 6. Save_Run.m ..99
 7. Run_Stopmulti.m ..99
 8. Reset_num.m ...100
 9. Pulsewidth_main.m ...101
 10. Temp_readings_main.m ...101
 11. XSteam.m ..102

APPENDIX F. DAS OUTPUT FILES ...103

LIST OF REFERENCES ..115

INITIAL DISTRIBUTION LIST ...117
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transonic Compressor Test Rig Design. Source: [4]</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Probe Positions of the Test Section. Source: [4]</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Isometric Air Flow Diagram</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Split View Air Flow Diagram</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>(a) T-S Diagram, (b) Pressure Ratio Map, and (c) Isentropic Efficiency Map</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>HP 75000 Series B VXI Mainframe</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>HPVEE Software GUI</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Schematic of Legacy DAS. Adapted from [7]</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Pressure Ratio Map</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Isentropic Efficiency Map</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>DSA 3217/16Px “Pressure Brick”</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>NI cDAQ-9188XT Chassis</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>NI 9214 High-Density Thermocouple Module. Source: [9]</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Pressure Data Collection Protocol</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>Schematic of Upgraded DAS</td>
<td>19</td>
</tr>
<tr>
<td>17</td>
<td>Pressure Measurement Flow Diagram</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>Pressure Measurement Bar Graph</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>Pressure Measurement Raw Data</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>Temperature Measurement Flow Diagram</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>Temperature Measurement Bar Graph</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>Temperature Measurement Raw Data</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>MATLAB Scripts</td>
<td>29</td>
</tr>
<tr>
<td>Table 2</td>
<td>Pressure and Temperature Port Position. Source: [13]</td>
<td>43</td>
</tr>
<tr>
<td>Table 3</td>
<td>Main MATLAB Functions</td>
<td>53</td>
</tr>
<tr>
<td>Table 4</td>
<td>MATLAB Script Overview</td>
<td>61</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AS1</td>
<td>Axial Station 1</td>
<td></td>
</tr>
<tr>
<td>AS3</td>
<td>Axial Station 3</td>
<td></td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
<td></td>
</tr>
<tr>
<td>DAS</td>
<td>Data acquisition system</td>
<td></td>
</tr>
<tr>
<td>FPS</td>
<td>Frames per second</td>
<td></td>
</tr>
<tr>
<td>GUI</td>
<td>Graphic user interface</td>
<td></td>
</tr>
<tr>
<td>HMI</td>
<td>Human machine interface</td>
<td></td>
</tr>
<tr>
<td>HPVEE</td>
<td>Data acquisition software program created by Hewlett Packard</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
<td></td>
</tr>
<tr>
<td>MATLAB</td>
<td>Programming language and software developed by MathWorks.</td>
<td></td>
</tr>
<tr>
<td>NI cDAQ</td>
<td>National Instruments Compact Data Acquisition</td>
<td></td>
</tr>
<tr>
<td>NI MAX</td>
<td>National Instruments Measurement and Automation software</td>
<td></td>
</tr>
<tr>
<td>NPS</td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>Operating system</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
<td></td>
</tr>
<tr>
<td>TCR</td>
<td>Transonic Compressor Test Rig</td>
<td></td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

It is with immense gratitude that I acknowledge the support and help of my principal advisors, Dr. Anthony Gannon and Dr. Garth Hobson. Their mentorship and wealth of knowledge was fundamental to ensuring my work was focused and met the key objectives. Their enthusiasm toward my thesis made this a truly unforgettable experience. I would like to recognize John Gibson for his support and for being instrumental to the installation of the system.

I would also like to thank my wife, Grace, for her enduring love and support. This has been a challenging process and without her constant encouragement, this would not have been possible.
I. INTRODUCTION

A. MOTIVATION

The Naval Postgraduate School (NPS) has frequently used the transonic compressor test rig (TCR) to test new axial transonic compressor rotors and casings for design and performance improvements [1]. Technology has improved the ability to create more detailed designs and has led to an increase in testing at NPS. While the rotors and casings produced are becoming more advanced, the data acquisition system (DAS) used to measure the performance of these products has become slow and outdated in comparison to currently available DAS products.

This work involves the procurement, design, and implementation of upgrades to the current DAS. This report documents replacement hardware for measuring temperature and rotational speed as well as the source code executed to acquire data, process data, display results, and generate reports.

B. TRANSONIC COMPRESSOR TEST RIG DESIGN AND INSTRUMENTATION

The TCR design and instrumentation description from previous work by Drayton [2], Grossman [3] and Hobson et al. [4] is summarized below. The TCR diagram in Figure 1 consists of a transonic axial rotor mounted on a single shaft with two opposed rotor, single stage air-operated drive turbines. The turbines are powered by supply air from an Allis Chalmers compressor. Atmospheric air is drawn into the inlet plenum and throttled via an electrically actuated butterfly valve; it then passes through the settling chamber, flow rate nozzle and finally to the transonic axial rotor where it is expelled back to the atmosphere.
Mass flow is measured by a flow rate nozzle placed just aft of the settling chamber depicted in Figure 1. Inlet stagnation pressure and stagnation temperature are measured with two combination-probes. A static pressure port measures inlet static pressure [4]. Outlet stagnation pressure is measured with eleven Kiel pressure probes and nine combination-probes. Outlet stagnation temperature is measured by the nine combination probes. Static pressure is measured with four static pressure ports in the hub, and two static pressure ports in the casing. Inlet measurements are taken at AS1 and outlet measurements are taken at AS3, as shown in Figure 2. Pressure and temperature probe placement is described in Appendix A.
Throughflow analysis of the TCR utilizes the stream-tube method illustrated in Figures 3 and 4. Probes measure streamlines of the stream-tube \((r_i \text{ and } r_o)\) at stations AS1 and AS3. The probes are placed at various radial placements described in Appendix A to create inlet and outlet pressure profiles. The stage or rotor performance is calculated using the mass flow rate and circumferentially mass averaged pressures and temperatures [5].

Figure 3. Isometric Air Flow Diagram

Figure 4. Split View Air Flow Diagram
The throughflow analysis provides the stagnation pressure ratio, isentropic efficiency, and power [6]. The data reduction formulas required to extract useful data are detailed in Chapter V and Appendix B. Figure 5 provides a basic outlook of what the result of data reduction provides for each experiment. The experimental results are compared to the isentropic, or idealized, results as a useful measure of the compressor’s performance (Figure 5 (a)). Figure 5 (b) and (c) illustrate the mass averaged pressure ratio and isentropic efficiency versus mass flow at 70%, 80%, and 90% design speed.

![Figure 5. (a) T-S Diagram, (b) Pressure Ratio Map, and (c) Isentropic Efficiency Map](image)

Figure 5. (a) T-S Diagram, (b) Pressure Ratio Map, and (c) Isentropic Efficiency Map
II. LEGACY DATA ACQUISITION SYSTEM

The following section discusses the hardware and software components of the legacy system that will be replaced.

A. HP 75000 SERIES B VXI MAINFRAME

The TCR utilized the HP 75000 Series B VXI mainframe depicted in Figure 6. The VXI (VMEbus eXtensions for Instrumentation) was designed for various applications from test and measurement to data acquisition and analysis. The slot-based chassis was designed as an open, multivendor platform that allowed for modules from different companies to interact within the same software programs. This allowed for more precise timing and synchronization between multiple instruments, and increased data transfer rates.

Figure 6. HP 75000 Series B VXI Mainframe

Thermocouple readings were sent to the HP 75000 via three HP E1347A 16 channel thermocouple multiplexer modules. The VXI mainframe was then connected to the PC with a HP 82341C controller card [7].

A magnetic speed pickup module was located aft of the drive turbines in the TCR and sends a voltage signal for each revolution. The signal was read by a HP E1332A 4 channel counter-totalizer module housed in the HP 75000, and was connected to the PC through the same HP 82341C controller card [7].
B. HPVEE SOFTWARE

Pressure, temperature, and speed data was transferred to the PC and utilized by HPVEE software. HPVEE was a graphical programming language that could acquire data, process data, display results, and generate reports. The graphical user interface (GUI) used a block diagram structure with each block resembling a function, variable, or sub-block diagram. HPVEE also allowed MATLAB code to be used for processing data as shown in Figure 7.

![Figure 7. HPVEE Software GUI](image)

HPVEE was limited in how it could process data. It was designed to run in a loop format and took an average of four to six seconds to refresh data. The software could only perform one function at a time, which resulted in a timestamp deviation between the pressure, temperature, and rotational speed data. The program was also very difficult to manipulate and did not have a clear organizational structure. The display formatting options limited the amount of data and graphs that could be displayed. While newer
versions of HPVEE are available, they do not interact with the HP 75000 Series B mainframe.

C. 32-BIT WINDOWS XP COMPUTER

The legacy DAS used a 32-bit Windows XP computer. This computer was significantly slower than the current 64-bit Windows 10 computers and had limited support when repairs were needed. The computer also lacked the ability to communicate with newer hardware components.

D. SYSTEM CONFIGURATION OVERVIEW

An updated schematic of the legacy DAS from McNab [7] is displayed in Figure 8. The thermocouple inputs and magnetic speed pickup were read into the HP 75000 and then relayed to the PC for processing and analysis with HPVEE. The pressure inputs from the pressure bricks were connected to an 8-port hub and then relayed to the same PC. The pressure instrumentation will be explained in further detail in the next chapter. The strain measurements recorded by the strain gauges were routed to an NI cDAQ 9181 and then to the same 8-port hub. The strain measurements were then sent to a separate PC and were not modified as part of this study.

Figure 8. Schematic of Legacy DAS. Adapted from [7].
E. LEGACY DAS PERFORMANCE MAPS

Rotor only tests were run at speeds of 70%, 80%, 85%, and 90% of the design rotational speed. During each of these test runs, the air flow into the compressor was throttled by an electronically actuated butterfly valve. Measurements were taken at each throttle setting until the system reached stall conditions.

Figure 9 displays the results of these test runs as the total-to-total pressure ratio versus the corrected mass flow rate. Figure 10 displays the results as isentropic efficiency versus the corrected mass flow rate. Each speed line in the maps corresponded to a test run at the specific percentage of the design rotational speed. These maps are used to compare the performance and efficiency of different rotor and casing designs.
Figure 10. Isentropic Efficiency Map
III. NEW DATA ACQUISITION SYSTEM

This section will describe the hardware components of the new data acquisition system.

A. REQUIREMENTS OF UPDATED DATA ACQUISITION SYSTEM

The new DAS hardware met the following requirements to be considered for the new system:

1. **Compact**: The hardware needs to be small enough to fit in the test cell.
2. **Ruggedized**: The hardware must be able to withstand high temperatures and vibrations.
3. **Ethernet Capable**: The hardware needs to connect to the PC via an ethernet connection.
4. **Measure J-Type Thermocouple**: The thermocouples in the TCR will remain the same and the new system must connect to the existing thermocouples.
5. **Counter-totalizer**: The hardware should have a counter-totalizer that can measure pulse width and frequency.
6. **Synchronized Timing**: Must provide synchronized time to accurately correlate and log the temperature and speed data.
7. **Modern Computing Equipment and Software**: A modern high-level programming language that operates on a 64-bit computer.

B. PROCUREMENT OF UPDATED DATA ACQUISITION SYSTEM

The existing digital sensor array or “pressure bricks” were kept in the new DAS because they are rugged, reliable, and could interact directly using the prevalent ethernet connection standard.
Several compact data acquisition systems were considered from Measurement Computing Corp., National Instruments, DATAQ Instruments, and Pacific Instruments to replace the temperature and speed instrumentation. The National Instruments CompactDAQ system was chosen for its ability to meet all seven hardware requirements. The CompactDAQ products are rugged, portable, and are module based. National Instruments also provides a wide array of support, tutorials, and sample code for utilizing their instruments with MATLAB.

1. **Digital Sensor Array**

Pressure measurements from the probes installed in the TCR were monitored in near real time by three Scanivalve Corporation DSA 3217/16Px (25psid) pressure bricks pictured in Figure 11, and one Scanivalve Corporation DSA 3217/8Px (25psid) pressure brick. The DSA 3217 pressure bricks can scan at a rate of 500 samples/chan/sec with UDP Binary acquisition or 200 samples/chan/sec with TCP/IP ASCII acquisition with an accuracy of ±0.05% FS [8].

![DSA 3217/16Px “Pressure Brick”](image)

Figure 11. DSA 3217/16Px “Pressure Brick”
2. **Chassis**

The NI cDAQ-9188XT chassis displayed in Figure 12 has the following design specifications:

- 8 modular input slots
- Data-synchronization with a built-in clock
- Supports several measurements such as temperature, strain, voltage, and resistance
- Operating temperature ranging from -40 °C to 70 °C
- High ruggedness, vibration tolerance ranging from 10 Hz to 500 Hz

![NI cDAQ-9188XT Chassis](image-url)

Figure 12. NI cDAQ-9188XT Chassis

3. **Temperature Module**

Three NI 9214 C series thermocouple modules were chosen for thermocouple readings, as pictured in Figure 13. The module has the following specifications:

- 16 thermocouple channels
- Maximum accuracy of 1.24 °C
- Autozero channel for compensation of offset errors
- Sample rate of 68 Scans/s
- High-resolution and high-speed timing modes

![Image of NI 9214 High-Density Thermocouple Module](image.jpg)

Figure 13. NI 9214 High-Density Thermocouple Module. Source: [9].

4. **Rotational Speed Module**

The NI 9402 C series digital module in Figure 14 was chosen to measure rotational speed. The module has the following specifications:

- 4 bidirectional individually configurable channels
- BNC connectivity
- Update rate of 55 ns
- Frequency and pulse width measurement capable
5. **MATLAB Software**

MATLAB software has a wide array of capabilities available including a full suite of data acquisition support. It can talk directly with the new DAS hardware and can run on the most up to date OS platforms. MATLAB can also acquire continuous data in the background from the chassis, which allows for near real time synchronization with the pressure bricks.

6. **64-bit WINDOWS 10 Computer**

64-bit WINDOWS 10 computers use the most up-to-date OS available and can communicate with all required hardware and software.
IV. HARDWARE IMPLEMENTATION

A. DSA 3217 PRESSURE BRICK

The DSA 3217 pressure bricks have a static IP address and require the PC to be configured with a static IP containing the same first three octets as the pressure bricks. More modern measurement instruments have dynamic IP’s that simplify the connection process. The pressure brick interfaces with MATLAB using the Instrument Control App. From the app, commands can be sent and received with the pressure brick and are provided in the DSA3217 operation and service manual [8]. After connecting to the pressure brick and sending and receiving data through the Instrument Control App, the session was exported to generate the code used by the app. This code was then modified to run the pressure bricks from a main script. Full details on how to setup the pressure bricks and what commands to use are discussed in Appendix C.

The ASCII packet format is used to receive pressures from the pressure brick. The pressure brick can be customized to take a specified number of readings or frames per scan (FPS). The range is from 1 FPS to continuous FPS. The pressure brick formats these pressures into packets and places them in an output buffer. The packet is in the following format.

Frame # <number> (Subpacket 1)

<port #> <pressure [PA]> <temperature [K]> (Subpacket 2)

```
    "    "    "    "
    "    "    "    "
```

<port #> <pressure [PA]> <temperature [K]> (Subpacket n)

MATLAB can only process one subpacket per read command from the output buffer. To ensure near real time measurements, the FPS is set to 1 to ensure that the most recent pressure scan can be paired with the most recent temperature and rotational speed data. Figure 15 is a schematic of the pressure data collection protocol.
B. NI CDAQ 9188XT CHASSIS AND MODULES

The chassis require the installation of the National Instruments Measurement and Automation Explorer (NI MAX). Prior to taking measurements the chassis’ IP configuration is set to static IP due to the pressure bricks requiring a static IP connection. Prior to running the chassis with MATLAB, the chassis and its associated modules must perform a self-test in NI MAX. Detailed procedures for connecting the chassis and associated modules is found in Appendix C.

The NI 9214 thermocouple and NI 9402 counter-totalizer modules are setup using example MATLAB scripts provided by MathWorks [11]. They are configured for high-
resolution mode with a scan rate of two scans per second. Detailed setup instructions are provided in Appendix C.

C. SYSTEM CONFIGURATION OVERVIEW

Figure 16 depicts the upgraded DAS diagram. The pressure data acquired by the DSA 3217 pressure bricks directly connect to the 8-port hub. The temperature and speed data from the NI cDAQ 9188XT and the strain gauge data from the NI cDAQ 9181 also connect directly to the 8-port hub. The pressure, temperature, and speed data are passed to the first PC, and the strain gauge data is passed to the second PC.

Figure 16. Schematic of Upgraded DAS
V. DATA REDUCTION

As explained by Sayari and Bölcs [5], “on each stream-tube, the flow is assumed one-dimensional and different circumferential averaging techniques are employed in order to ensure the conservation laws.” There are three types of averages that can be used in data reduction of the TCR.

The first definition is the area average,
\[
\left(\overline{P^a} \right) = \frac{\int PdA}{\int dA}
\]

The second definition is the density average,
\[
\left(\overline{P^d} \right) = \frac{\int P\rho dA}{\int \rho dA}
\]

The third definition is the mass average,
\[
\left(\overline{P^m} \right) = \frac{\int P\rho v_z dA}{\int \rho v_z dA}
\]

Hirsch and Dring [12] debated at length the differences between using density averaged and mass averaged quantities for throughflow analysis. The density averaged equation reduces the area averages in incompressible flow. Additional “interaction” terms are also produced that require iterative computations of the stream surfaces. Density averaged quantities had been the standard method for processing throughflow models. But Hirsch and others in his field explored using mass averaged quantities to validate the TCR throughflow models.

Hirsch and Dring [12] postulated that the mass averaged quantities had, “physical arguments and the strong connection between mass averaged quantities, like stagnation pressure, total energy and machine efficiency, are essential to the correct estimation of the energy within the turbomachinery blade row.” With the mass averaged quantity, the stream-tube is assumed constant at the inlet and outlet with the streamlines nearly
axisymmetric. This approach gives a more precise solution to the energy equation and a simplified data reduction that is further explained in Appendix B.

Utilizing the mass average definition produces the mass averaged pressure ratio,

$$\overline{\frac{P_{o3}}{P_{o1}}} = \frac{\int \left(\frac{P_{o3}}{P_{o1}} \right) \rho \nu_{z3} dA_3}{\int \rho \nu_{z3} dA_3}$$

And the mass averaged efficiency ratio,

$$\eta = \frac{\int \eta \rho \nu_{z3} dA_3}{\int \rho \nu_{z3} dA_3}$$
VI. HARDWARE COMMUNICATION

The first step in creating the new DAS program in MATLAB was to write individual test programs for each component.

A. PRESSURE MEASUREMENT PROGRAM FLOW

The flow diagram of the pressure measurement program is illustrated in Figure 17. The output of this program is the pressure graph in Figure 18, and the raw pressure data in the command line shown in Figure 19.

![Pressure Measurement Flow Diagram](image)

Figure 17. Pressure Measurement Flow Diagram
This program measures gauge pressure and does not add atmospheric pressure to the value. This results in small values shown in Figure 18. This figure constantly updates as the conditions change at the pressure brick.

Figure 18. Pressure Measurement Bar Graph

Figure 19. Pressure Measurement Raw Data
B. TEMPERATURE MEASUREMENT PROGRAM FLOW

The flow diagram of the temperature measurement program is illustrated in Figure 20. The output of this program is the temperature graph in Figure 21, and the raw temperature data in the command line shown in Figure 22.

![Temperature Measurement Flow Diagram](image)

Figure 20. Temperature Measurement Flow Diagram
Figure 21. Temperature Measurement Bar Graph

Figure 22. Temperature Measurement Raw Data
C. ROTATIONAL SPEED MEASUREMENT PROGRAM FLOW

The flow diagram of the rotational speed measurement program is illustrated in Figure 23. The compressor was not run during this program test and a signal generator was used to compensate. The output of this program is the RPM data in the command line shown in Figure 24.

![Rotational Speed Measurement Flow Diagram](image)

Figure 23. Rotational Speed Measurement Flow Diagram
The MATLAB program scripts for the three test measurements is provided in Appendix D.

D. COMBINED PROGRAM FLOW

The DAS program consists of ten MATLAB scripts and functions. These include the following, the code of which can be found in Appendix E.
<table>
<thead>
<tr>
<th>Script Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main.m</td>
<td>Initializes test instrumentation, calls for initial constants, and loads figures.</td>
</tr>
<tr>
<td>Parameters_multibrick.m</td>
<td>Connects to pressure bricks and sets parameters such as units and FPS.</td>
</tr>
<tr>
<td>Calc_constants.m</td>
<td>Calculates initial constants.</td>
</tr>
<tr>
<td>Constants.m</td>
<td>Sets user inputs constants and calls for initial constants to be recalculated.</td>
</tr>
<tr>
<td>Pulsewidth_main.m</td>
<td>Reads pulse width from NI cDAQ and converts to RPM.</td>
</tr>
<tr>
<td>Temp_readings_main.m</td>
<td>Reads temperature from NI cDAQ.</td>
</tr>
<tr>
<td>Run_Startmulti.m</td>
<td>Starts data acquisition process, continuously performs data reduction, and outputs results to figures.</td>
</tr>
<tr>
<td>Run_Stopmulti.m</td>
<td>Stops data acquisition process.</td>
</tr>
<tr>
<td>Reset_Num.m</td>
<td>Resets run number to one.</td>
</tr>
<tr>
<td>Save_Run.m</td>
<td>Saves output variables in .txt file and adds run number.</td>
</tr>
</tbody>
</table>
The DAS program is initiated with the script Main.m. This connects the pressure bricks and the NI cDAQ 9188XT chassis to MATLAB, loads the constants from the previous test run, and loads the required figures. The flow diagram for DAS initialization is illustrated in Figure 25.

![DAS Initialization Flow Diagram](image)

Figure 25. DAS Initialization Flow Diagram
Figure 26 depicts the main HMI figure which includes the command pushbuttons, data reduction calculations, and the downstream pressure and temperature graphs.

Figure 26. HMI Figure

Figure 27 is the user input constants figure. When generated, the figure contains constants from the previous test run. If any of the constants change, the user can enter new constants and the program will rerun the Calc_constants.m file with the new data.

Figure 27. User Input Constants Figure
When the data acquisition process is running, Figure 28 displays the raw pressure and temperature data. The pressure data displayed is the gauge pressure read from the pressure brick added to atmospheric pressure.

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>Temperature [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 = 101120.415815</td>
<td>T1 = 296.866354</td>
</tr>
<tr>
<td>P2 = 101120.415815</td>
<td>T2 = 295.952746</td>
</tr>
<tr>
<td>P3 = 101118.603350</td>
<td>T3 = 296.006972</td>
</tr>
<tr>
<td>P4 = 101120.415815</td>
<td>T4 = 296.307094</td>
</tr>
<tr>
<td>P5 = 101118.603350</td>
<td>T5 = 296.810869</td>
</tr>
<tr>
<td>P6 = 101120.415815</td>
<td>T6 = 296.839513</td>
</tr>
<tr>
<td>P7 = 101118.603350</td>
<td>T7 = 296.826373</td>
</tr>
<tr>
<td>P8 = 101120.415815</td>
<td>T8 = 296.815757</td>
</tr>
<tr>
<td>P9 = 101120.415815</td>
<td>T9 = 296.816259</td>
</tr>
<tr>
<td>P10 = 101120.415815</td>
<td>T10 = 296.730601</td>
</tr>
<tr>
<td>P11 = 101118.603350</td>
<td>T11 = 296.436168</td>
</tr>
<tr>
<td>P12 = 101120.415815</td>
<td>T12 = 296.800090</td>
</tr>
<tr>
<td>P13 = 101118.603350</td>
<td>T13 = 297.219136</td>
</tr>
<tr>
<td>P14 = 101120.415815</td>
<td>T14 = 296.028854</td>
</tr>
<tr>
<td>P15 = 101118.603350</td>
<td>T15 = 296.861895</td>
</tr>
<tr>
<td>P16 = 101120.415815</td>
<td>T16 = 297.355414</td>
</tr>
<tr>
<td>P17 = 101118.603350</td>
<td>T17 = 296.772704</td>
</tr>
<tr>
<td>P18 = 101120.415815</td>
<td>T18 = 296.677659</td>
</tr>
<tr>
<td>P19 = 101118.603350</td>
<td>T19 = 296.484788</td>
</tr>
<tr>
<td>P20 = 101120.415815</td>
<td>T20 = 297.396268</td>
</tr>
<tr>
<td>P21 = 101118.603350</td>
<td>T21 = 297.903652</td>
</tr>
<tr>
<td>P22 = 101120.415815</td>
<td>T22 = 296.727523</td>
</tr>
<tr>
<td>P23 = 101118.603350</td>
<td>T23 = 297.166242</td>
</tr>
<tr>
<td>P24 = 101120.415815</td>
<td>T24 = 297.257586</td>
</tr>
<tr>
<td>P25 = 101118.603350</td>
<td>T25 = 297.786230</td>
</tr>
<tr>
<td>P26 = 101120.415815</td>
<td>T26 = 297.865115</td>
</tr>
<tr>
<td>P27 = 101118.603350</td>
<td>T27 = 297.865115</td>
</tr>
<tr>
<td>P28 = 101120.415815</td>
<td>T28 = 297.865115</td>
</tr>
<tr>
<td>P29 = 101118.603350</td>
<td>T29 = 297.865115</td>
</tr>
<tr>
<td>P30 = 101120.415815</td>
<td>T30 = 297.865115</td>
</tr>
<tr>
<td>P31 = 101118.603350</td>
<td>T31 = 297.865115</td>
</tr>
<tr>
<td>P32 = 101120.415815</td>
<td>T32 = 297.865115</td>
</tr>
<tr>
<td>P33 = 101118.603350</td>
<td>T33 = 297.865115</td>
</tr>
<tr>
<td>P34 = 101120.415815</td>
<td>T34 = 297.865115</td>
</tr>
<tr>
<td>P35 = 101118.603350</td>
<td>T35 = 297.865115</td>
</tr>
<tr>
<td>P36 = 101120.415815</td>
<td>T36 = 297.865115</td>
</tr>
<tr>
<td>P37 = 101118.603350</td>
<td>T37 = 297.865115</td>
</tr>
<tr>
<td>P38 = 101120.415815</td>
<td>T38 = 297.865115</td>
</tr>
<tr>
<td>P39 = 101118.603350</td>
<td>T39 = 297.865115</td>
</tr>
<tr>
<td>P40 = 101120.415815</td>
<td>T40 = 297.865115</td>
</tr>
<tr>
<td>P41 = 101118.603350</td>
<td>T41 = 297.865115</td>
</tr>
<tr>
<td>P42 = 101120.415815</td>
<td>T42 = 297.865115</td>
</tr>
<tr>
<td>P43 = 101118.603350</td>
<td>T43 = 297.865115</td>
</tr>
<tr>
<td>P44 = 101120.415815</td>
<td>T44 = 297.865115</td>
</tr>
<tr>
<td>P45 = 101118.603350</td>
<td>T45 = 297.865115</td>
</tr>
<tr>
<td>P46 = 101120.415815</td>
<td>T46 = 297.865115</td>
</tr>
<tr>
<td>P47 = 101118.603350</td>
<td>T47 = 297.865115</td>
</tr>
<tr>
<td>P48 = 101120.415815</td>
<td>T48 = 297.865115</td>
</tr>
<tr>
<td>P49 = 101118.603350</td>
<td>T49 = 297.865115</td>
</tr>
<tr>
<td>P50 = 101120.415815</td>
<td>T50 = 297.865115</td>
</tr>
<tr>
<td>P51 = 101118.603350</td>
<td>T51 = 297.865115</td>
</tr>
<tr>
<td>P52 = 101120.415815</td>
<td>T52 = 297.865115</td>
</tr>
<tr>
<td>P53 = 101118.603350</td>
<td>T53 = 297.865115</td>
</tr>
<tr>
<td>P54 = 101120.415815</td>
<td>T54 = 297.865115</td>
</tr>
<tr>
<td>P55 = 101118.603350</td>
<td>T55 = 297.865115</td>
</tr>
</tbody>
</table>

Figure 28. Raw Pressure and Temperature Data Figure

After the DAS program completes initialization, the user can either input new constants, or they can start the data collection process by pressing the run push button in the HMI figure. The data collection flow diagram when the user starts the run is depicted in Figure 29.
The programmatic implementation of the MATLAB scripts and figures is designed to emulate the HPVEE program. This was chosen to ensure minimum disruption to the testing program. The main changes are the use of multiple figures and the ability to disable certain features depending on what process is being performed. For example, when the data collection process is not active, the save pushbutton is disabled so that the user will not collect false data stored in MATLAB’s memory. When the data collection process is active, the reset run number and apply changes to constants pushbuttons are disabled.

While each pushbutton in the figures has its own function associated to it, the primary process including the calculations and data display are carried out directly in the Run_Startmulti.m function. A detailed table of the program steps with all functions described is provided in Appendix E.
VII. RESULTS

To validate the new DAS, three criteria were chosen.

- All pushbuttons must operate as intended.
- All figures must display and update the required data.
- The results of the data reduction calculations must match the old DAS.

An actual test run of the TCR was not chosen for initial system validation. To reduce risk involved in changing to the new DAS, simulated tests were conducted between the legacy DAS and new DAS. The criteria were tested using a spare pressure brick with 16 pressure ports and the cDAQ 9188XT chassis connected to 25 thermocouples and a function generator. The pressure brick ports were called multiple times in a loop to simulate 56 pressure ports. To compare the two systems, 50,000 Pascals was added to the P_{o3} pressure ports and 150 K was added to the T_{o3} thermocouples. This produced a pressure ratio of approximately 1.5.

After the Main.m script successfully loaded all figures and calculated the constants, the user input constants were changed to match each other as shown in Figure 30. Next the “Run” pushbutton was pressed. This successfully disabled the “Reset Run #” and “Apply” pushbuttons and enabled the “Save” pushbutton as shown in Figures 30 and 31. This also started the data acquisition process. Approximately every 2 seconds, the HMI and raw data figures updated with new values as shown in Figures 31 and 32. The “Save”, “Stop”, and “Reset Run #” pushbuttons operated as intended as well. This successfully completed the first two criteria.
Figure 30. User Input Constants Figure Disabled

Figure 31. HMI Figure with Adjusted P_{03} and T_{03} Data
To meet the third criterion, the HPVEE system was run with the same input constants and parameters as the new DAS. Both DAS programs are designed to output a text file with several variables including raw data and the results of data reduction calculations. These files were reviewed in Excel for any major deviations. The review found that the values of the new DAS were within an acceptable range of the old DAS values. The only values that deviated significantly were some of the raw pressure and temperature values. This was due the fact that not all the pressure and temperature ports of the TCR are actively used. The output data files for both systems are provided in Appendix F.
VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this work was to procure, design, and implement upgrades to the TCR DAS, all of which has been accomplished. The following summarizes the main accomplishments of this work.

1. New commercial-off-the-shelf hardware has been procured that integrates well with the existing system.

2. The new DAS utilizes MATLAB to perform all necessary data acquisition and data processing. The code can easily be modified to add new data reduction calculations pertinent to testing.

3. The upgraded DAS can perform all the same functions as the previous system and can output results in the same format.

B. RECOMMENDATIONS

This work requires further implementation and testing before completely transferring to the new system. Recommendations are as follows:

1. To complete the system installation, a switchboard for the thermocouple ports must be installed. This would allow for the thermocouples to be connected to the new DAS and the old DAS as needed to continue comparisons of the actual TCR.

2. The figures should be modified to meet the needs of the user. The figure design emulated the HPVEE design for comparison purposes. The new figures could be customized to be easier to view as the user desires.

3. Full TCR test runs should be completed with the new DAS to confirm the validity of the program.
4. The MATLAB program scripts and functions should be modified to make the program more organized. Multiple sections of the code could be broken down into subsections to reduce lag and make future changes easier.
APPENDIX A. TEST INSTRUMENT PLACEMENT

Pressure and temperature measurements are taken forward and aft of the rotor at varying radial locations. Figures 33 and 34 display the instrumentation ports at the AS3 location.

Figure 33. Pressure and Temperature Instrumentation Ports for Outlet Casing
Table 2 lists all the instrumentation ports and their respective locations. For example, the current system configuration has ports 5 and 6 located upstream at AS1 and ports 11 through 30 located downstream at AS3.
Table 2. Pressure and Temperature Port Position. Source: [13].

<table>
<thead>
<tr>
<th>Port #</th>
<th>Scanivalve 1</th>
<th>Desired Depth (P)</th>
<th>Actual Depth</th>
<th>Desired Depth (T)</th>
<th>Actual Depth</th>
<th>Percentage Angle</th>
<th>Orientation, Rotor only</th>
<th>Temp Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Flow Nozzle P6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Flow Nozzle Ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inlet Pt1 Kiel Probe/TC Combo</td>
<td>0.05</td>
<td>0.06</td>
<td>0°</td>
<td>39.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inlet Pt1 Kiel Probe/TC Combo</td>
<td>0.1</td>
<td>0.12</td>
<td>28.8°</td>
<td>39.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Inlet Ps1 (static)</td>
<td>0.2</td>
<td>0.2</td>
<td>72°</td>
<td>39.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Inlet Ps1 (static)</td>
<td>0.3</td>
<td>0.305</td>
<td>115.2°</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Outlet Ps3 (static)</td>
<td>0.4</td>
<td>0.42</td>
<td>144°</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Outlet Ps3 (static)</td>
<td>0.5</td>
<td>0.52</td>
<td>187.2°</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Kiel Probe 0.05</td>
<td>0.05</td>
<td>0.59</td>
<td>225 [85.1%]</td>
<td>0.202</td>
<td>89.7°</td>
<td>216°</td>
<td>39.8</td>
</tr>
<tr>
<td>12</td>
<td>Kiel Probe 0.1</td>
<td>0.1</td>
<td>0.775</td>
<td>323 [82.4%]</td>
<td>0.4</td>
<td>79.6°</td>
<td>244.8°</td>
<td>39.9</td>
</tr>
<tr>
<td>13</td>
<td>Kiel Probe 0.2</td>
<td>0.2</td>
<td>0.815</td>
<td>273.6°</td>
<td>39.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Kiel Probe 0.3</td>
<td>0.3</td>
<td>0.305</td>
<td>115.2°</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Kiel Probe 0.4</td>
<td>0.4</td>
<td>0.42</td>
<td>144°</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Kiel Probe 0.5</td>
<td>0.5</td>
<td>0.52</td>
<td>187.2°</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Kiel Probe/TC combo 0.6</td>
<td>0.6</td>
<td>0.59</td>
<td>225 [85.1%]</td>
<td>0.202</td>
<td>89.7°</td>
<td>216°</td>
<td>39.8</td>
</tr>
<tr>
<td>18</td>
<td>Kiel Probe/TC combo 0.7</td>
<td>0.7</td>
<td>0.775</td>
<td>323 [82.4%]</td>
<td>0.4</td>
<td>79.6°</td>
<td>244.8°</td>
<td>39.9</td>
</tr>
<tr>
<td>19</td>
<td>Kiel Probe 0.8</td>
<td>0.8</td>
<td>0.815</td>
<td>273.6°</td>
<td>39.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Kiel Probe/TC combo 0.9</td>
<td>0.9</td>
<td>0.91</td>
<td>525 [73.0%]</td>
<td>0.51</td>
<td>74.0°</td>
<td>302.4°</td>
<td>40</td>
</tr>
<tr>
<td>21</td>
<td>Kiel Probe 1</td>
<td>1</td>
<td>1</td>
<td>316.8°</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Kiel Probe/TC combo 1.1</td>
<td>1.1</td>
<td>1.13</td>
<td>722 [60.8%]</td>
<td>0.73</td>
<td>62.8°</td>
<td>331.2°</td>
<td>40.7</td>
</tr>
<tr>
<td>23</td>
<td>Kiel Probe 1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>345.6°</td>
<td>41.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Kiel Probe 1.3</td>
<td>1.3</td>
<td>1.31</td>
<td>93</td>
<td>52.6°</td>
<td>14.4°</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Kiel Probe 1.4</td>
<td>1.4</td>
<td>1.41</td>
<td>43.2°</td>
<td>42.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Kiel Probe/TC combo 1.5</td>
<td>1.5</td>
<td>1.48</td>
<td>1121 [37.8%]</td>
<td>1.05</td>
<td>46.4°</td>
<td>86.4°</td>
<td>42.8</td>
</tr>
<tr>
<td>27</td>
<td>Kiel Probe 1.6</td>
<td>1.6</td>
<td>1.64</td>
<td>129.6°</td>
<td>43.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Kiel Probe/TC combo 1.7</td>
<td>1.7</td>
<td>1.765</td>
<td>1325 [28.3%]</td>
<td>1.37</td>
<td>30.1%</td>
<td>172.8°</td>
<td>44.2</td>
</tr>
<tr>
<td>29</td>
<td>Kiel Probe 1.75</td>
<td>1.75</td>
<td>1.78</td>
<td>201.6°</td>
<td>44.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Kiel Probe/TC combo 1.8</td>
<td>1.8</td>
<td>1.795</td>
<td>1482 [19.89%]</td>
<td>1.42</td>
<td>27.6%</td>
<td>230.4°</td>
<td>45.3</td>
</tr>
<tr>
<td>31</td>
<td>Hub static pressure P2 1/ Static Kulite [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Hub static pressure P2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Hub static pressure P2 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Hub static pressure P2 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Hub static pressure P3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Hub static pressure P3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Hub static pressure P3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Hub static pressure P3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Static Kulite [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Static Kulite [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Static Kulite [0] Leading edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Static Kulite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Static Kulite [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Static Kulite [3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Static Kulite [4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Static Kulite [5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Static Kulite [6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Static Kulite [7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Custom temperature probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Custom temperature probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B. DATA REDUCTION

The data reduction calculations performed in this program were described in detail by Drayton [2], Hobson [4], Descovich [6], and McNab [7]. The only data reduction calculations not previously described in a thesis were the relative humidity calculations, which were provided by Gannon [13] and detailed by Borgnakke [14].

The first calculation determines the saturated air humidity ratio ω_{sat}. Gas constants R_{air} and R_{water}, and total pressure P_{tot} are provided in the initial constants calculations. Saturated vapor pressure P_{vapor_sat} is found using the wet bulb temperature and the XSTEAM function.

$$\omega_{sat} = \frac{m_{vapor_sat}}{m_{air}} = \frac{R_{air}}{R_{water}} \left(\frac{P_{vapor_sat}}{P_{tot} - P_{vapor_sat}} \right)$$

(1)

From the adiabatic saturation process, the first law can be reduced to equation (2). Here C_{p_air} is the specific heat capacity of moist air. All variables are previously calculated except for the relative humidity ratio ω, saturated vapor enthalpy, $h_{vapor_sat_wet}$, saturated liquid enthalpy h_{liq_sat}, and saturated vapor enthalpy, $h_{vapor_sat_dry}$. The enthalpy values are calculated using the XSTEAM function with the wet bulb temperature for the first two and stagnation temperature at AS1, T_{01_avg}, for the latter.

$$C_{p_air} \left(T_{wetbulb} - T_{01_avg} \right) + \omega_{sat} \left(h_{vapor_sat_wet} - h_{liq_sat} \right) + \omega h_{liq_sat} = \omega h_{vapor_sat}$$

(2)

The equation can then be rearranged to solve for the humidity ratio ω.

$$\omega = \frac{C_{p_air} \left(T_{wetbulb} - T_{01_avg} \right) + \omega_{sat} \left(h_{vapor_sat_wet} - h_{liq_sat} \right)}{h_{vapor_sat_dry} - h_{liq_sat}}$$

(3)

The relative humidity ϕ is then calculated from relationship between the humidity ratio, the gas constants, average inlet stagnation pressure, and saturated vapor pressure.
The constant pressure specific heat of air, \(C_{p_{\text{air}}} \), is recalculated with the updated humidity ratio.

\[
\phi = \frac{\omega}{(R_{\text{air}}/R_{\text{water}}) + \omega P_{\text{vapor_sat}}} \tag{4}
\]

The constant pressure specific heat of air, \(C_{p_{\text{air}}} \), is recalculated with the updated humidity ratio.

\[
C_{p_{\text{air}}} = \frac{C_{p_{\text{ref}}} + \omega * C_{p_{\text{vapor}}}}{1 + \omega} \tag{5}
\]

The gas constant of air, \(R_{\text{air}} \), is recalculated as well using the updated humidity ratio.

\[
R_{\text{air}} = \frac{R_{\text{ref}} + \omega * R_{\text{water}}}{1 + \omega} \tag{6}
\]

The constant volume specific heat of air is then calculated from the difference of \(C_{p_{\text{air}}} \) and \(R_{\text{air}} \).

\[
C_{v_{\text{air}}} = C_{p_{\text{air}}} - R_{\text{air}} \tag{7}
\]

The heat capacity ratio, \(\gamma_{\text{air}} \), is then found from the ratio of constant pressure specific heat of air over constant volume specific heat of air. The heat capacity ratio is a key variable used in several equations to include the air density, pressure ratio and absolute exit velocity.

\[
\gamma_{\text{air}} = \frac{C_{p_{\text{air}}}}{C_{v_{\text{air}}}} \tag{8}
\]

The first time the program ran, these variables were set as reference constants. Once the program did a full run through the above constants were updated with accurate values. It is important to allow the program to run for a few seconds prior to taking any measurements to ensure that the relative humidity equations have processed.
APPENDIX C. INSTRUMENTATION SETUP

The pressure bricks require static IP configuration to connect to the PC. Prior to setting the PC to a static configuration, the NI cDAQ 9188XT must be assigned a static IP address with the same first three octets as the pressure bricks. The first step is to open NI MAX and reserve the network device, as shown in Figure 35. Then switch to the network settings tab.

![Figure 35. NI MAX Home Screen](image)

On the network settings page the user can change the IP address to static and input a new IP address, as depicted in Figure 36. Once the static IP address is set, the PC must be configured with a static IP as well, as pictured in Figure 37.
Once the IP addresses for both the PC and the NI cDAQ 9188XT chassis were set, the chassis must perform a self-test. As shown in Figure 35, a self-test button is available and in the top menu bar. This ensured that the chassis and all modules were working properly. After the self-test, the chassis was ready to communicate with MATLAB.
Initial communication between the PC and the pressure bricks was achieved using the DSA Link 3 software program. This program allowed the user to verify the pressure brick was operational as well as perform a zero-calibration. Figures 38 and 39 display the software interface.

Figure 38. DSA Link 3 Connection Display

Figure 39. DSA Link 3 Bar Graph Display
The final MATLAB program uses only scripts and functions to communicate with the pressure bricks and NI cDAQ 9188XT chassis. National Instruments had provided ample example code to set up the chassis, but the pressure bricks had an internal command language with no MATLAB support. To determine how to connect the pressure bricks to MATLAB the Test and Measurement Tool App was utilized. An interface object was created with the IP address of the pressure brick. This opened a communication window that allowed the user to send commands specifically designed for the equipment. After connecting and sending sample commands, the user could view the actual MATLAB code utilized in the session log tab as depicted in Figures 40, 41, and 42.
Figure 41. Test and Measurement Tool App Communication Tab
Figure 42. Test and Measurement Tool App Session Log Tab
APPENDIX D. INDIVIDUAL COMPONENT DESCRIPTION AND MATLAB CODE

A. MATLAB FUNCTIONS

Table 3 details the main functions used in MATLAB. The descriptions were adapted from Scanivalve’s manual [8] and MathWorks documentation pages [15].

Table 3. Main MATLAB Functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Associated Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instrfind</td>
<td>DSA 3217</td>
<td>Reads serial port objects from memory to MATLAB workspace</td>
</tr>
<tr>
<td>tcpip</td>
<td>DSA 3217</td>
<td>Creates a TCPIP object</td>
</tr>
<tr>
<td>fopen</td>
<td>DSA 3217</td>
<td>Establishes a connection with the TCPIP object</td>
</tr>
<tr>
<td>fprintf</td>
<td>DSA 3217</td>
<td>Write function to communicate specific DSA commands</td>
</tr>
<tr>
<td>fscanf</td>
<td>DSA 3217</td>
<td>Read function that pulls packets from output buffer</td>
</tr>
<tr>
<td>SET UNITSCAN PA</td>
<td>DSA 3217</td>
<td>Sets scan units to Pascals</td>
</tr>
<tr>
<td>SET EU 1</td>
<td>DSA 3217</td>
<td>Sets scan units to Engineering Units</td>
</tr>
<tr>
<td>SET BIN 0</td>
<td>DSA 3217</td>
<td>Sets the format of the data packet to ASCII</td>
</tr>
<tr>
<td>SET FPS 1</td>
<td>DSA 3217</td>
<td>Sets the frames per scan to 1</td>
</tr>
<tr>
<td>SET QPKTS 0</td>
<td>DSA 3217</td>
<td>Frames will be discarded when the data buffer is full</td>
</tr>
<tr>
<td>SCAN</td>
<td>DSA 3217</td>
<td>Commands the DSA to scan the pressure sensors and send scan packets to the client</td>
</tr>
<tr>
<td>STOP</td>
<td>DSA 3217</td>
<td>Aborts current DSA operation</td>
</tr>
<tr>
<td>daq.getDevices</td>
<td>NI cDAQ 9188XT</td>
<td>Displays available data acquisition devices</td>
</tr>
<tr>
<td>daq.createSession</td>
<td>NI cDAQ 9188XT</td>
<td>Creates a data acquisition session</td>
</tr>
<tr>
<td>addAnalogInputChannel</td>
<td>NI cDAQ 9188XT</td>
<td>Adds an analog input channel</td>
</tr>
<tr>
<td>addCounterInputChannel</td>
<td>NI cDAQ 9188XT</td>
<td>Adds a counter input channel</td>
</tr>
<tr>
<td>s.Rate</td>
<td>NI cDAQ 9188XT</td>
<td>Specifies scans per second</td>
</tr>
<tr>
<td>s.DurationInSeconds</td>
<td>NI cDAQ 9188XT</td>
<td>Specifies the duration of acquisition</td>
</tr>
<tr>
<td>s.Channels</td>
<td>NI cDAQ 9188XT</td>
<td>Calls an array of channel objects associated with session object</td>
</tr>
<tr>
<td>s.ThermocoupleType</td>
<td>NI cDAQ 9188XT</td>
<td>Sets the thermocouple type</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>s.Units</td>
<td>Sets the unit of thermocouple measurement</td>
<td></td>
</tr>
<tr>
<td>addlistener</td>
<td>Calls a callback function every time the source object sends new data</td>
<td></td>
</tr>
<tr>
<td>s.Tag</td>
<td>Specifies a unique identifier of the object that can be called in separate functions</td>
<td></td>
</tr>
<tr>
<td>s.startBackground</td>
<td>Starts background operations</td>
<td></td>
</tr>
<tr>
<td>s.Stop</td>
<td>Stops background operations</td>
<td></td>
</tr>
<tr>
<td>global</td>
<td>Declares variables as global, and allows them to be called in any function</td>
<td></td>
</tr>
<tr>
<td>load()</td>
<td>Loads variables from file into the current workspace</td>
<td></td>
</tr>
<tr>
<td>save()</td>
<td>Saves the current workspace variables to file</td>
<td></td>
</tr>
<tr>
<td>uicontrol()</td>
<td>Create user interface control object</td>
<td></td>
</tr>
<tr>
<td>findobj()</td>
<td>Can locate an object based on the Tag identifier</td>
<td></td>
</tr>
<tr>
<td>s.String</td>
<td>Specifies the string array used by the object</td>
<td></td>
</tr>
<tr>
<td>dlmwrite</td>
<td>Writes to an ASCII-delimited file</td>
<td></td>
</tr>
</tbody>
</table>
B. **DSA 3217 PRESSURE BRICK**

Script file that connects to the pressure brick and outputs the raw pressure data and associated bar graph.

```matlab
%% Pressure Brick Connection and Test
clear all
close all
clc
% Create figure to display pressure vs. port #
Pgraph = figure(1);
x=[1:1:16];
y=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
pbar = bar(x,y);
hold on;
grid on;
xlabel('Pressure Port #');
ylabel('Gauge Pressure [Pa]');
xticks([1:1:16]);
pause(0.1)
% Find a tcpip object.
obj1 = instrfind('Type', 'tcpip', 'RemoteHost', '191.30.80.137', 'RemotePort', 23, 'Tag', '');
% Create the tcpip object if it does not exist, otherwise use the object that was found.
if isempty(obj1)
    obj1 = tcpip('191.30.80.137', 23);
else
    fclose(obj1);
```
```matlab
obj1 = obj1(1);
end
% Connect to instrument object, obj1.
fprintf(obj1);
% Communicating with instrument object, obj1.
    % Set units to Pascals
    fprintf(obj1, 'SET UNITSCAN PA');
    % Set Engineering Units format
    fprintf(obj1, 'SET EU 1');
    % Set to ASCII data format
    fprintf(obj1, 'SET BIN 0');
    % Set Frames Per Scan
    fprintf(obj1, 'SET FPS 1');
    % Set Buffer to clear when full and continue sending data
    fprintf(obj1, 'SET QPKTS 0');
i=1;
for i=1:1:1000;
    % Sends Scan Command to DSA Pressure Brick
    fprintf(obj1, 'SCAN')
    % Discards first variable from packet which lists frame number,
    % if set to FPS = 1 all frames will be 0
    frame = fscanf(obj1);
    for n=1:16
        % Extracts Pressure and Temperature readings in order # 1 to 16 ports
        data1 = str2num(fscanf(obj1));
        % Takes Pressure readings and discards DSA temperature readings
        pdata(n)=data1(2)
    end
    % Updates pressure values in plot
```
pbar.YData=pdata;
pause(0.2)
i=i+1;
end
% If FPS is set to 0 (infinite) this will stop pressure brick in a secure manner
fprintf(obj1,'STOP');
% Clear input buffer
flushinput(obj1);
% Clear output buffer
flushoutput(obj1);

C. **NI 9214 THERMOCOUPLE MODULE**

Script files that connects to the thermocouple module and outputs raw temperature data and associated bar graph.

%%% NI 9214 Thermocouple Connection and Test
clear all
close all
clc
% Create figure to display temperature vs. port #
Tgraph = figure(1);
x=[1:1:25];
y=[0 0];
tbar = bar(x,y);
tbar.Tag= 'tbar';
hold on;
grid on;
xlabel('Thermocouple Port #');
ylabel('Temperature [K]');
xticks([1:1:25]);
yticks([0:50:400]);
ylim([0 400])
pause(0.1)

% Create DAQ Session
devices = daq.getDevices;
s = daq.createSession('ni');
% Add Thermocouple Modules to measure temperature
for i=0:9
 addAnalogInputChannel(s,'cDAQ9188XT-1C3BF24Mod3',i, 'Thermocouple');
end
for i=0:9
 addAnalogInputChannel(s,'cDAQ9188XT-1C3BF24Mod5',i, 'Thermocouple');
end
for i=0:4
 addAnalogInputChannel(s,'cDAQ9188XT-1C3BF24Mod7',i, 'Thermocouple');
end
% Set rate [scans per second]
s.Rate = 1
% Set time of run, to set as infinite use s.IsContinuous = true
s.DurationInSeconds = 1000;
% Set up temperature units (Required to run script)
tc = s.Channels();
for i=1:25
tc(i).ThermocoupleType = 'J';
tc(i).Units = 'Kelvin';
end
% Add listener with function for reading thermocouples
lh=addlistener(s,'DataAvailable', @temp_readings_graph);
% Start background acquisition
s.startBackground();
% Use delete(lh) to end script early or if continuous run being used

%% Add listener function for thermocouple module
function temp_readings_graph(src,event)
% Reads temperature data from modules
tdata=event.Data
% Identifies tag for bar graph
h=findobj('Tag','tbar');
% Updates temperature values of bar graph
h.YData=tdata;
pause(1);
end

D. NI 9402 COUNTER-TOTALIZER MODULE

Script files that connects to the counter-totalizer module and outputs pulse width and RPM raw data.

%% NI 9402 Counter-Totalizer Connection and Test
clear all
close all
clc
% Create DAQ Session
s = daq.createSession('ni');
% Add BNC Module to measure Pulse Width
addCounterInputChannel(s,'cDAQ9188XT-1C3BF24Mod1', 0 , 'PulseWidth');
% Add Additional Module (Required for external clock sync in background function)
addAnalogInputChannel(s,'cDAQ9188XT-1C3BF24Mod3',0, 'Thermocouple');
% Set up temperature units (Required to run script)
tc = s.Channels(2);
tc.ThermocoupleType = 'J';
tc.Units = 'Kelvin';
% Set time of run, to set as infinite use s.IsContinuous = true
s.DurationInSeconds = 100;
% Set rate [scans per second]
s.Rate = 1;
% Add listener with function for reading Pulse Width and RPM
lh=addlistener(s,'DataAvailable', @pulsewidth);
% Start background acquisition
s.startBackground();
% Use delete(lh) to end script early or if continuous run being used

%% Add listener function for counter-totalizer module
function pulsewidth(src,event)
% Reads pulsewidth data from module and converts to RPM
pw = event.Data(1);
RPM = 60/pw
end
APPENDIX E. DAS DESCRIPTION AND MATLAB CODE

A. DAS PROGRAM DESCRIPTION

Table 4 describes the specific actions occurring within each MATLAB script and function.

<table>
<thead>
<tr>
<th>1. Run main script</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Constants script is called to run</td>
</tr>
<tr>
<td>1.1.1 User input parameters from previous test run are loaded</td>
</tr>
<tr>
<td>1.1.2 Required constants are calculated</td>
</tr>
<tr>
<td>1.1.3 Constants variables are saved as a workspace file</td>
</tr>
<tr>
<td>1.2 Pressure parameters function is called to run</td>
</tr>
<tr>
<td>1.2.1 Pressure bricks are connected to MATLAB</td>
</tr>
<tr>
<td>1.2.2 Pressure bricks are given setup commands</td>
</tr>
<tr>
<td>1.2.3 Pressure bricks perform zero-calibration</td>
</tr>
<tr>
<td>1.3 Data acquisition session is created with NI-DAQ9188XT</td>
</tr>
<tr>
<td>1.3.1 NI 9402 module configured for pulse width measurements</td>
</tr>
<tr>
<td>1.3.2 NI 9214 modules configured for thermocouple measurements</td>
</tr>
<tr>
<td>1.3.3 Measurement parameters and continuous listening functions set</td>
</tr>
<tr>
<td>1.4 User input constants figure created</td>
</tr>
<tr>
<td>1.4.1 Input fields for atmospheric pressure, percent of speed, design speed, calibration pressure, and wet bulb temperature are created</td>
</tr>
<tr>
<td>1.5 Raw pressure and temperature figure created</td>
</tr>
<tr>
<td>1.5.1 Display fields for pressure and temperature data created</td>
</tr>
<tr>
<td>1.6 HMI figure created</td>
</tr>
<tr>
<td>1.6.1 User command pushbuttons created</td>
</tr>
<tr>
<td>1.6.2 Static text displays for pertinent data created</td>
</tr>
<tr>
<td>1.6.3 Downstream pressure and temperature profile graphs created</td>
</tr>
<tr>
<td>1.6.4 Save pushbutton disabled</td>
</tr>
<tr>
<td>2. User input constants pushbutton function (Apply)</td>
</tr>
<tr>
<td>2.1 Saves user input data as workspace file</td>
</tr>
<tr>
<td>2.2 Calls on constants script</td>
</tr>
<tr>
<td>2.2.1 Loads user input data and preforms constants calculations</td>
</tr>
<tr>
<td>3. Run pushbutton function</td>
</tr>
<tr>
<td>3.1 Load constants workspace file</td>
</tr>
<tr>
<td>3.2 Disable user input constants figure and reset run number pushbutton</td>
</tr>
<tr>
<td>3.3 Enable save pushbutton</td>
</tr>
<tr>
<td>3.4 Start NI data acquisition in background</td>
</tr>
</tbody>
</table>
3.5 Send scan command to pressure bricks
3.6 Receive raw pressure data from pressure bricks
3.7 Convert raw pressure to absolute pressure
3.8 Receive temperature and rotational speed data from NI instruments
3.9 Perform torque calculations
3.10 Perform RPM calculations
3.11 Performs upstream calculations
3.12 Performs mass averaged pressure and temperature calculations
3.13 Performs mass flow calculations
3.14 Perform pressure ratio calculations
3.15 Perform power calculations
3.16 Perform relative humidity calculations
3.17 Update raw pressure and temperature figure display fields
3.18 Update HMI figure display fields and graphs
3.19 Repeat steps 3.5-3.18 until interrupted by outside command

4. Stop pushbutton function
4.1 Stop NI data acquisition in background
4.2 Change trigger variable to stop Run function while loop
4.3 Disable save pushbutton
4.4 Enable user input constants figure and reset run number

5. Save pushbutton function
5.1 Create .txt file with date and run speed as title (Only for first time pressed)
5.2 Add heading for each variable to be written to file (Only for first time pressed)
5.3 Write run number and required variables to file
5.4 Update run number

6. Reset run number pushbutton function
6.1 Resets run number to “1”
B. DSA MATLAB CODE

1. Main.m

The Main.m script is used to initialize the DAS program.

```matlab
%% Main Run Script
clear all
close all
clc
% Set the required global variables
global runnum ni_set pline tline save_trigger firstsave
% Preloaded input constants from the previous run
load('preloaded_constants');
Atmos=num2str(Atmos_Hg);
Spdpercent=num2str(Spdpct);
DRpm=num2str(DesignRpm);
Calpress=num2str(Calpress_Hg);
Twbulb=num2str(Twetbulb);
%
pdata = [];
tdata = [];
save_trigger = 0;
firstsave = 0;
% Connect DSA pressure bricks and set parameters
Pparameters multibrick;
% Create DAQ Session
devices = daq.getDevices;
```
ni_set = daq.createSession('ni');
% Add Counter-totalizer & Thermocouple Modules to measure rotational speed &
temperature
addCounterInputChannel(ni_set,'cDAQ9188XT-1C3BF24Mod1',0, 'PulseWidth');
for itemp = 0:9;
addAnalogInputChannel(ni_set,'cDAQ9188XT-1C3BF24Mod3',itemp, 'Thermocouple');
end
for itemp = 0:9;
addAnalogInputChannel(ni_set,'cDAQ9188XT-1C3BF24Mod5',itemp, 'Thermocouple');
end
for itemp = 0:4;
addAnalogInputChannel(ni_set,'cDAQ9188XT-1C3BF24Mod7',itemp, 'Thermocouple');
end
% Set rate [scans per second]
i_set.Rate = 2;
% Set time of run, to set as infinite use s.IsContinuous = true
ni_set.IsContinuous = true;
% Set temperature units
tc = ni_set.Channels(2:26);
for i=1:25
tc(i).ThermocoupleType = 'J';
tc(i).Units = 'Kelvin';
end
% Add listener with function for reading Pulse Width and RPM
lh_pw=addlistener(ni_set,'DataAvailable', @Pulsewidth_main);
% Add listener with function for reading thermocouples
lh_t=addlistener(ni_set,'DataAvailable', @Temp_readings_main);
disp('NI DAQ Parameters set. Ready to scan...')
disp('Previous Constants loaded. Make changes now or start run...')
% Figure 1

cfg = figure(1);
cfg.Visible = 'off';
cfg.Units = 'Normalized';

constant_title = uicontrol('Style','text','Parent',cfg,...
 'Units','normalized',...
 'Position',[0.35 0.88 0.3 0.07],...
 'FontWeight','bold','FontUnits','normalized','String','Constants');

edit_atmp = uicontrol('Style','edit','Parent',cfg,...
 'Units','normalized',...
 'Position',[0.2 0.78 0.3 0.07],...
 'ForegroundColor','b','FontUnits','normalized',...
 'String','Atmos',...
 'Callback','','Tag','atmp');

edit_percspd = uicontrol('Style','edit','Parent',cfg,...
 'Units','normalized',...
 'Position',[0.2 0.68 0.3 0.07],...
 'ForegroundColor','b',...
 'String','Spdpercent','FontUnits','normalized',...
 'Callback','','Tag','spd');

edit_dspd = uicontrol('Style','edit','Parent',cfg,...
 'Units','normalized',...
 'Position',[0.2 0.58 0.3 0.07],...
 'ForegroundColor','b','FontUnits','normalized',...
'String', 'DRpm', ... 'Callback', '', 'Tag', 'design');

edit_calp = uicontrol('Style', 'edit', 'Parent', cfig,...
'Units', 'normalized', ...
'Position', [0.2 0.48 0.3 0.07], ...
'foregroundColor', 'b', 'FontUnits', 'normalized', ...
'String', Calpress, ...
'Callback', '', 'Tag', 'cal');

edit_twetbulb = uicontrol('Style', 'edit', 'Parent', cfig,...
'Units', 'normalized', ...
'Position', [0.2 0.38 0.3 0.07], ...
'foregroundColor', 'b', 'FontUnits', 'normalized', ...
'String', Twbulb, ...
'Callback', '', 'Tag', 'wetbulb');

Bt_atmp = uicontrol('Style', 'text', 'Parent', cfig,...
'Units', 'normalized', ...
'Position', [0.52 0.78 0.5 0.07], ...
'backgroundColor', 'g', ...
'foregroundColor', 'b', ...
'FontWeight', 'bold', 'FontUnits', 'normalized', 'String', 'Atmospheric Pressure [Hg]');

Bt_percspd = uicontrol('Style', 'text', 'Parent', cfig,...
'Units', 'normalized', ...
'Position', [0.52 0.68 0.5 0.07], ...
'backgroundColor', 'g', ...
'foregroundcolor','b',...
'FontWeight','bold','FontUnits','normalized','String','Percent of Speed [%]');

Bt_dspd = uicontrol('Style','text','Parent',cfig,...
'Units','normalized',...
'Position',[0.52 0.58 0.5 0.07],...
'backgroundcolor','g',...
'foregroundcolor','b',...
'FontWeight','bold','FontUnits','normalized','String','Design Speed [rpm]');

Bt_calp = uicontrol('Style','text','Parent',cfig,...
'Units','normalized',...
'Position',[0.52 0.48 0.5 0.07],...
'backgroundcolor','g',...
'foregroundcolor','b',...
'FontWeight','bold','FontUnits','normalized','String','Calibration Pressure [in Hg]');

Bt_twetbulb = uicontrol('Style','text','Parent',cfig,...
'Units','normalized',...
'Position',[0.52 0.38 0.5 0.07],...
'backgroundcolor','g',...
'foregroundcolor','b',...
'FontWeight','bold','FontUnits','normalized','String','T WetBulb [C]');

Bp_constants = uicontrol('Style','pushbutton','Parent',cfig,...
'Units','normalized',...
'Position',[0.25 0.2 0.2 0.1],...
'String','Apply',...
'FontWeight','bold','FontSize',15,'Callback',@Constants,'Tag','applybtn');
% Figure 2
% Raw Data Figure Display
rawdatafig = figure(2);
rawdatafig.Visible = 'off';
rawdatafig.Units='Normalized';

rawdata_title = uicontrol('Style','text','Parent',rawdatafig,...
'Units','normalized',...
'Position',[0.35 0.93 0.3 0.07],...
'FontWeight','bold','FontUnits','normalized','String','Raw Data');

pressure_title = uicontrol('Style','text','Parent',rawdatafig,...
'Units','normalized',...
'Position',[0.11 0.9 0.3 0.07],...
'FontWeight','bold','FontUnits','normalized','String','Pressure [Pa]');

temp_title = uicontrol('Style','text','Parent',rawdatafig,...
'Units','normalized',...
'Position',[0.61 0.9 0.3 0.07],...
'FontWeight','bold','FontUnits','normalized','String','Temperature [K]');

p_readings = uicontrol('Style','text','Parent',rawdatafig,...
'Units','Normalized','Position',[0 0 .5 .9],'min',0,'max',2,...
'enable','inactive','FontUnits','normalized','Tag','rawpressure');

t_readings = uicontrol('Style','text','Parent',rawdatafig,...
'Units','Normalized','Position',[.5 0 .5 .9],'min',0,'max',2,...
'enable','inactive','FontUnits','normalized','Tag','rawtemp');
% Figure 3
runnum = 1;
run_count = num2str(runnum);
hmifig = figure(3);
hmifig.Visible = 'off';
% HMI Figure Display
hmifig.Units='Normalized';
hold on

Run_btn = uicontrol('Style','pushbutton','Parent',hmifig,...
 'String','Run','Units','Normalized','Position',[0 .9 .18 .08],...
 'FontWeight','bold','FontUnits','normalized','Callback',@Run_Startmulti);

Stop_btn = uicontrol('Style', 'pushbutton','Parent',hmifig,...
 'String','Stop','Units','Normalized','Position',[0 .8 .18 .08],...
 'FontWeight','bold','FontUnits','normalized','Callback',@Run_Stopmulti);

Resetnum_btn = uicontrol('Style', 'pushbutton','Parent',hmifig,...
 'String','Reset Run #','Units','Normalized','Tag','resetbtn',...
 'FontWeight','bold','FontUnits','normalized','Position',[0 .7 .18 .08],'Callback',@Reset_num);

Save_btn = uicontrol('Style', 'pushbutton','Parent',hmifig,...
 'String','Save','Units','Normalized','Enable','off','Tag','savebtn',...
 'FontWeight','bold','FontUnits','normalized','Position',[0 .6 .18 .08],'Callback',@Save_Run);

PoPs_txt=uicontrol('Style','text','Parent',hmifig,...
'Units','normalized','Position', [.19 .92 .1 .04],...
'FontWeight','bold','FontUnits','normalized','BackgroundColor','g','String','Po-Ps:');

PoPs_num=uicontrol('Style','text','Parent',hmifig,...
'Units','normalized','Position', [.29 .92 .15 .04],...

'FontWeight','bold','FontUnits','normalized','BackgroundColor','w','String','','Tag ','po_ps');

relhum_txt=uicontrol('Style','text','Parent',hmifig,...
'Units','normalized','Position', [.19 .84 .1 .04],...

'FontWeight','bold','FontUnits','normalized','BackgroundColor','g','String','RelHum id [%]:');

relhum_num=uicontrol('Style','text','Parent',hmifig,...
'Units','normalized','Position', [.29 .84 .15 .04],...

'FontWeight','bold','FontUnits','normalized','BackgroundColor','w','String','','Tag ','humid');

run_txt=uicontrol('Style','text','Parent',hmifig,...
'Units','normalized','Position', [.19 .76 .1 .04],...

'FontWeight','bold','FontUnits','normalized','BackgroundColor','g','String','Run #');

run_num=uicontrol('Style','text','Parent',hmifig,...
'Units', 'normalized', 'Position', [.29 .76 .15 .04],...

'FontWeight', 'bold', 'FontUnits', 'normalized', 'backgroundcolor', 'w', 'String', 'run_count', 'Tag', 'runnumber');

rpm_txt = uicontrol('Style', 'text', 'Parent', hmifig,...
 'Units', 'normalized', 'Position', [.19 .68 .1 .04],...

'FontWeight', 'bold', 'FontUnits', 'normalized', 'backgroundcolor', 'g', 'String', 'RPM');

rpm_num = uicontrol('Style', 'text', 'Parent', hmifig,...
 'Units', 'normalized', 'Position', [.29 .68 .15 .04],...

'FontWeight', 'bold', 'FontUnits', 'normalized', 'backgroundcolor', 'w', 'String', '', 'Tag ', 'rpmvalue');

rpmint_txt = uicontrol('Style', 'text', 'Parent', hmifig,...
 'Units', 'normalized', 'Position', [.19 .6 .1 .04],...

'FontWeight', 'bold', 'FontUnits', 'normalized', 'backgroundcolor', 'g', 'String', 'Intended RPM');

rpmint_num = uicontrol('Style', 'text', 'Parent', hmifig,...
 'Units', 'normalized', 'Position', [.29 .6 .15 .04],...

'FontWeight', 'bold', 'FontUnits', 'normalized', 'backgroundcolor', 'w', 'String', '', 'Tag ', 'rpmintended');

rpmref_txt = uicontrol('Style', 'text', 'Parent', hmifig,...

71
'Units','normalized','Position',[0.19 .52 .1 .04],...
'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Referr ed RPM');

rpmref_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[.29 .52 .15 .04],...
'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','','Tag ','rpmref');

raw_title = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized',...
 'Position',[0.05 0.36 0.2 0.05],...
'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Raw');

scale_title = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized',...
 'Position',[0.3 0.36 0.2 0.05],...
'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','Scale');

pratioraw_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.02 0.31 .1 .04],...
'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Pressure Ratio');

72
pratioraw_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.12 0.31 .13 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','','Tag ',''praw');

massflowraw_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.02 0.21 .1 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Mass Flow [kg/s]');

massflowraw_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.12 0.21 .13 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','','Tag ',''massfraw');

pratioscale_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.27 0.31 .1 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Pressure Ratio');

pratioscale_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.37 0.31 .13 .04],...
massflowscale_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.27 0.21 .1 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Mass Flow [kg/s]');

massflowscale_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.37 0.21 .13 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','');

axial_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.02 0.11 .1 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Axial Inlet [m/s]');

axial_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.12 0.11 .13 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','');

Relinlet_txt = uicontrol('Style','text','Parent',hmifig,...
'Units','normalized','Position',[0.02 0.01 .1 .04],...

'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Rel Inlet [Mach]');

Relinlet_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.12 0.01 .13 .04],...

'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','','Tag ',',mach');

Eff_Stage_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.27 0.11 .1 .04],...

'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Eff Stage');

Eff_Stage_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.37 0.11 .13 .04],...

'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','','Tag ',',stage');

Eff_Rot_txt = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.27 0.01 .1 .04],...

'FontWeight','bold','FontUnits','normalized','backgroundcolor','g','String','Eff Rot Only');
Eff_Rot_num = uicontrol('Style','text','Parent',hmifig,...
 'Units','normalized','Position',[0.37 0.01 .13 .04],...
 'FontWeight','bold','FontUnits','normalized','backgroundcolor','w','String','','Tag '
 ',rot');

[Atmos_Hg,Spdpct,DesignRpm,Calpress_Hg,Twetbulb,Pdist,Do3,P_HubTip,comp_out_hub_in,
HubTip,Rho_Hg,TWetBulb,Dialin_Hg,Inch_m,g,Po_3_index,Po_1_index,Ps_1_case_index,Ps_3
_hub_index,Ps_3_case_index,To_1_index,d_pl,AnH,To_3_index, T_dist,T_HubTip,
lbs_N,Intended_RPM,CToK,Torque_coerticients,
P_ref,T_WetBulb,Referred_T,T_ref,Gam_Air, R_air,R_Ref, R_wat,
Cp_air,Cp_Ref,Dnoz,Anoz, Cnoz,Fan_dia, Dinf, Ainf, DNose,ANose, Gam_Ref,
RelHumid]=Calc_constants();
py=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
tx=[T_HubTip,HubTip];
ty=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
DSTRMP = subplot(2,2,2);
hold on;
 pline = animatedline(P_HubTip,py);
 pline.Tag = 'pline';
 title('Pressure');
 ylabel('Pressure [Pa]')
 grid on;
 DSTRMP.YLimMode = 'auto';
DSTRMT = subplot(2,2,4);
hold on;
 tline= animatedline(tx,ty);
 title('Temperature');
ylabel('Temperature [K]');
grid on;
DSTRMT.YLimMode = 'auto';

% Turn on figures
hmifig.Visible = 'on';
rawdatafig.Visible = 'on';
cfig.Visible = 'on';

2. **Pparameters_multibrick.m**

The pressure bricks were connected and formatted using the Pparameters.m script.

```matlab
%% DSA pressure brick connection and formatting
function Pparameters_multibrick()
% Find a tcpip object.
global pbrick1 pbrick2 pbrick3 pbrick4
% pbrick1 = instrfind('Type', 'tcpip', 'RemoteHost', '191.30.80.137',
% 'RemotePort', 23, 'Tag', ''); Used for test pressure brick
pbrick1 = instrfind('Type', 'tcpip', 'RemoteHost', '172.20.120.230', 'RemotePort', 23, 'Tag', '');
pbrick2 = instrfind('Type', 'tcpip', 'RemoteHost', '172.20.120.231', 'RemotePort', 23, 'Tag', '');
pbrick3 = instrfind('Type', 'tcpip', 'RemoteHost', '172,20,120,232', 'RemotePort', 23, 'Tag', '');
pbrick4 = instrfind('Type', 'tcpip', 'RemoteHost', '172.20.120.235', 'RemotePort', 23, 'Tag', '');
```
% Create the tcpip object if it does not exist
% otherwise use the object that was found.
if isempty(pbrick1)
 pbrick1 = tcpip('172.20.120.230', 23);
else
 fclose(pbrick1);
 pbrick1 = pbrick1(1);
end
if isempty(pbrick2)
 pbrick2 = tcpip('172.20.120.231', 23);
else
 fclose(pbrick2);
 pbrick2 = pbrick2(1);
end
if isempty(pbrick3)
 pbrick3 = tcpip('172,20,120,232', 23);
else
 fclose(pbrick3);
 pbrick3 = pbrick3(1);
end
if isempty(pbrick4)
 pbrick4 = tcpip('172.20.120.235', 23);
else
 fclose(pbrick4);
 pbrick4 = pbrick4(1);
end
% Connect to instrument object, obj1.
fopen(pbrick1);
fopen(pbrick2);
fclose(pbrick3);
fclose(pbrick4);

% Communicating with instrument object, obj1.
fprintf(pbrick1, 'SET UNITSCAN PA');
fprintf(pbrick1, 'SET EU 1');
fprintf(pbrick1, 'SET BIN 0');
fprintf(pbrick1, 'SET FPS 1');
fprintf(pbrick1, 'SET QPKTS 0');
fprintf(pbrick2, 'SET UNITSCAN PA');
fprintf(pbrick2, 'SET EU 1');
fprintf(pbrick2, 'SET BIN 0');
fprintf(pbrick2, 'SET FPS 1');
fprintf(pbrick2, 'SET QPKTS 0');
fprintf(pbrick3, 'SET UNITSCAN PA');
fprintf(pbrick3, 'SET EU 1');
fprintf(pbrick3, 'SET BIN 0');
fprintf(pbrick3, 'SET FPS 1');
fprintf(pbrick3, 'SET QPKTS 0');
fprintf(pbrick4, 'SET UNITSCAN PA');
fprintf(pbrick4, 'SET EU 1');
fprintf(pbrick4, 'SET BIN 0');
fprintf(pbrick4, 'SET FPS 1');
fprintf(pbrick4, 'SET QPKTS 0');
disp('Pressure Parameters set. Ready to scan...')
end
3. **Calc_Constants.m**

The system constants were calculated with Cal_Constants.m script.

```matlab
%% Constants preload
function
[Atmos_Hg, Spdpct, DesignRpm, Calpress_Hg, Twetbulb, Pdist, Do3, P_HubTip, comp_out_hub_in, 
HubTip, Rho_Hg, TWetBulb, Dialin_Hg, Inch_m, g, Po_3_index, Po_1_index, Ps_1_case_index, Ps_3_hub_index, Ps_3_case_index, To_1_index, d_pl, AnH, To_3_index, T_dist, T_HubTip, 
lbs_N, Intended_RPM, CToK, Torque_coefficients, 
P_ref, T_WetBulb, Referred_T, T_ref, Gam_Air, R_air, R_Ref, R_wat, 
Cp_air, Cp_Ref, Dnoz, Anoz, Cnoz, Fan_dia, Dinf, Ainf, DNose, ANose, Gam_Ref, RelHumid] = Calc_constants()
load('preloaded_constants');
Pdist = [0.05 0.09 0.17 0.27 0.40 0.49 0.59 0.78 0.80 0.90 0.98 1.09 1.20 1.30 1.40 
1.50 1.61 1.73 1.78 1.80];
Do3 = 11.308; % Comp_out_dia [in]
P_HubTip = [];
for i=1:20;
    P_HubTip(i)=1-2*(Pdist(i))/(Do3);
end
comp_out_hub_in = 7.425;
HubTip = comp_out_hub_in/Do3;
Rho_Hg = 13550; % Mercury density [kg/m^3]
TWetBulb = 285; % Wetbulb [in K]
Dialin_Hg = 10; % Cal Press [in Hg]
Inch_m = 0.0254; % Inch to meters [m]
g = 9.81; % Gravitational constant [m/s^2]
Po_3_index = [11:1:30]; % port #
```

80
Po_1_index = [5 6]; % port #
Ps_1_case_index = [7 8];
Ps_3_hub_index = [35 36 37];
Ps_3_case_index = [9 10];
To_1_index = [15 13]; % remove
d_p1 = 0;
AnH = (Do3-comp_out_hub_in)/2; % Annulus Height
To_3_index = [1 8 7 6 5 3 9 2 10]; % port #
T_dist = [100 91.6 80.4 75.8 63.3 43.9 31.1 27.6 7.9];
T_HubTip = [];
for i = 1:9;
 T_HubTip(i) = (Do3-2*AnH*(1-T_dist(i)/100))/Do3;
end
lbs_N = 4.44822; % pound force in Newton [N]
Intended_RPM = DesignRpm*Spdpct/100;
rpmint = findobj('Tag','rpmintended');
rpmint.String=sprintf('%0.1f',Intended_RPM);
CToK = 273.15; % Celcius to Kelvin
KToC = -273.15; % Kelvin to Celcius
BarToPa=100000;
PaToBar=1/100000;
Torque_coefficients = [-1.064 5113];
P_ref = 101300; % Referred Press [Pa]
T_WetBulb = CToK+Twetbulb; % T Wetbulb [K]
Referred_T = 518.7; % Referred Temp [R];
T_ref = Referred_T/1.8;
Gam_Air = 1.4;
R_air = 287; % [J/kgK]
R_Ref = 287; % [J/kgK]
R_wat = 461.5; % R wat vap [J/kgK]
Cp_air = Gam_Air*R_air/(Gam_Air-1);
Cp_Ref = Gam_Air*R_air/(Gam_Air-1);
Dnoz = 12; % Nozzle Diam [in]
Anoz = (pi*(Dnoz*Inch_m)^2)/4;
Cnoz = 1.03; % Noz discharge coeff
FanDia = 11.308; % Fan diameter [in]
Dinf = FanDia*Inch_m; % Fan diameter [m]
Ainf = (pi*Dinf^2)/4; % Rotor Area [m^2]
DNose = 3.6*Inch_m;
ANose = (pi*DNose^2)/4;
Gam_Ref = 1.4;
RelHumid = 0;
save('Current_constants');
end
4. Constants.m

User input constants are loaded with Constants.m script.

%% User input Constants Function
function Constants(Bp_constants,~)
 h=findobj('Tag','atmp');
 Atmos_Hg = h.String;
 Atmos_Hg = str2num(Atmos_Hg);
 h=findobj('Tag','spd');
 Spdpct = h.String;
 Spdpct = str2num(Spdpct);
 h=findobj('Tag','design');
 DesignRpm = h.String;
 DesignRpm = str2num(DesignRpm);
 h=findobj('Tag','cal');
 Calpress_Hg = h.String;
 Calpress_Hg = str2num(Calpress_Hg);
 h=findobj('Tag','wetbulb');
 Twetbulb = h.String;
 Twetbulb = str2num(Twetbulb);
 save('preloaded_constants','Atmos_Hg','Spdpct','DesignRpm','Calpress_Hg','Twetbulb'
)
 Calc_constants
end
5. **Run_Startmulti.m**

Data acquisition occurs within Run_Startmulti.m script.

```matlab
%% Run DAS Function
function [pdata] = Run_Startmulti(Run_btn,~)
    global ni_set pressurestat pbrick1 pbrick2 pbrick3 pbrick4 tdatar RPMr
    save_trigger runnum firstsave
    load('Current_constants');
    h=findobj('Tag','atmp');
    h.Enable = 'off';
    h=findobj('Tag','spd');
    h.Enable = 'off';
    h=findobj('Tag','design');
    h.Enable = 'off';
    h=findobj('Tag','cal');
    h.Enable = 'off';
    h=findobj('Tag','wetbulb');
    h.Enable = 'off';
    h=findobj('Tag','applybtn');
    h.Enable = 'off';
    h=findobj('Tag','savebtn');
    h.Enable = 'on';
    h=findobj('Tag','resetbtn');
    h.Enable = 'off';
    refrpm = findobj('Tag','rpmref');
    pops = findobj('Tag','po_ps');
    axial=findobj('Tag','axial');
```
% i=1;
i_set.startBackground();
pause(0.5);
while pressurestat == 1;
pause(1);
fprintf(pbrick1, 'SCAN');
frame = fscanf(pbrick1);
for n=1:16
data1 = str2num(fscanf(pbrick1));
pdata(n)=data1(2);
end
fprintf(pbrick2, 'SCAN');
frame = fscanf(pbrick2);
for n=17:32
data1 = str2num(fscanf(pbrick2));
pdata(n)=data1(2);
end
fprintf(pbrick3, 'SCAN');
frame = fscanf(pbrick3);
for n=33:48
data1 = str2num(fscanf(pbrick3));
pdata(n)=data1(2);
end
fprintf(pbrick4, 'SCAN');
frame = fscanf(pbrick4);
for n=49:64
data1 = str2num(fscanf(pbrick4));
pdata(n)=data1(2);
end
P_Atmos = Rho_Hg*g*Atmos_Hg*Inch_m;
pdata=pdata+P_Atmos;
for i=11:30
 pdata(i)=pdata(i);
 % pdata(i)=pdata(i)+50000; Used for testing without TCR running
end
tdata = tdatar;
% tdata(1)=tdata(1)+150; Used for testing without TCR running
% tdata(8)=tdata(8)+150;
% tdata(7)=tdata(7)+150;
% tdata(6)=tdata(6)+150;
% tdata(5)=tdata(5)+150;
% tdata(3)=tdata(3)+150;
% tdata(9)=tdata(9)+150;
% tdata(2)=tdata(2)+150;
% tdata(10)=tdata(10)+150;
RPM = RPMr;
% Calculations_main
% ScanOneTorque
Torque_Nm = -(polyval(Torque_coefficients,0.1)); %off by one decimal place
Torque_inlbs = Torque_Nm/(Inch_m*lbs_N);
% Calc_RPM_ref
To1 = [tdata(To_1_index)];
To1_avg = mean(To1);%To_inf
Theta_ref = (Gam_Air*R_air*To1_avg)/(Gam_Ref*R_Ref*T_ref);
RPM_ref = RPM/sqrt(Theta_ref);
%%%refrpm
Scale_RPM = Intended_RPM/RPM_ref;
% Calc Upstream
Ps1_case=[pdata(Ps_1_case_index)];
Ps1_avg=mean(Ps1_case); %ps_inf
Po1=[pdata(Po_1_index)];
Po1_avg=mean(Po1); %po_inf
d_P1 = Po1_avg-Ps1_avg;
%%%pops
Delta_ref=(Po1_avg*Gam_Air)/(P_ref*Gam_Air);
U_inf = sqrt(abs(1-(Ps1_avg/Po1_avg)^((Gam_Air-1)/Gam_Air)))*sqrt(2*Cp_air*To1_avg); %Inlet velocity
%%%axial
UTip = (2*pi*RPM/60)*Dinf/2;
AR = (Ainf-ANose)/Ainf;
vo = sqrt(2*Cp_air*To1_avg);
X1 = U_inf/vo;
U1 = vo*(X1/AR);
v = (U1^2+UTip^2); % Relative Inlet Velocity
vo2 = (2*Cp_air*To1_avg); % Stagnation Velocity
X2 = v/vo2;
\begin{verbatim}
MachinRel = sqrt(2*X2/((Gam_Air-1)*(1-X2)));

%%%machin
% Calc Mass Avg
d_HubTip = (P_HubTip(1:(end-2))-P_HubTip(3:end))/2; %Core Values (p(1:18)-p(3:20))/2 ----> (18 numbers)
d_HubTip = [(1-P_HubTip(2))/2, d_HubTip]; % Tip value [(1-P(2))/2 (1 number); (18 numbers) ---> (19 numbers)
d_HubTip = [d_HubTip, (P_HubTip(end-1)-HubTip)/2]; % Hub Value

Po3_profile = [pdata(Po_3_index)];
Ps3_case = mean(pdata(Ps_3_case_index));
Ps3_hub = mean(pdata(Ps_3_hub_index));
Y_HubTip = [Ps3_case; Ps3_hub];
X_HubTip = [1; HubTip];
Y1_HubTip = interp1(X_HubTip,Y_HubTip,P_HubTip);
for i=1:20
 PrA(i) = Y1_HubTip(i)/Po3_profile(i);
end
for i=1:20
 PrB(i) = ((abs(PrA(i)))^(1/Gam_Air))*sqrt(abs(1-PrA(i)^((Gam_Air-1)/Gam_Air)));
end
To3 = [tdata(To_3_index)];
To3_array = [To3,To3(end)];
X_HubTip = [T_HubTip,HubTip];
Y_HubTip = To3_array;
To3_Map = interp1(X_HubTip,Y_HubTip,P_HubTip);
for i=1:20
 int(i) = (Po3_profile(i)/sqrt(To3_Map(i)))*PrB(i)*P_HubTip(i)*d_HubTip(i);
end
Po3 = (sum(Po3_profile.*int))/sum(int); % po3 avg
\end{verbatim}
To3 = (sum(To3_Map.*int))/sum(int); \%to3 avg
Ps3 = (sum(Y1_HubTip.*int))/sum(int); \%ps3 avg
\%Effic_Avg;
\% Exit whirl data
Omega = 2*pi*RPM/60; \% [rad/s]
ro3 = (Do3*.0254)/2; \% Radii
V_th3 = (Cp_air./(Omega*ro3)).*(To3_Map-To1_avg); \% Exit Whirl
Vabs = sqrt(abs(1-(Y1_HubTip./Po3_profile).^((Gam_Air-1)/Gam_Air))).*sqrt(2*Cp_air.*To3_Map); \% Absolute EXit Velocity
Alp2 = real(asin(V_th3./Vabs)); \% Exit angle
Alp2(Alp2>(pi/2-0.01)) = pi/2-0.01;
Alp2(Alp2<(-pi/2+0.01)) = -pi/2+0.01;
fred = Vabs.*cos(Alp2); \% Junk data for output
fred = Alp2;
\%Alp2 = zeros(size(Alp2)) \% For debugging
Vz3 = Vabs.*cos(Alp2) \% Axial velocity
\% Mass averaged Properties
rho = (Po3_profile./(R_air*To3_Map)).*(Y1_HubTip./Po3_profile).^(1/Gam_Air); \% Density
dA = 2*pi.*(ro3^2).*P_HubTip.*d_HubTip; \% Areas
dmA = rho.*Vz3.*dA;
\% Mass Flow based on axial
dm = rho.*Vabs.*dA;
\% Mass Flow based on absolute
EffMA_Map = ((Po3_profile/Po1_avg).^((Gam_Air-1)/Gam_Air)-1)./((To3_Map/To1_avg)-1);
% Values based on absolute velocity
To3_new = sum(To3_Map.*dm)/sum(dm);
Po3_new = sum(Po3_profile.*dm)/sum(dm);
Ps3_new = sum(Y1_HubTip.*dm)/sum(dm);
Eff_Stage = sum(EffMA_Map.*dm)/sum(dm); % Stage suitable

Power_MA = Cp_air*sum((To3_Map-To1_avg).*dm);

% Rotor only values based on axial velocity
To3_Rot = sum(To3_Map.*dm)/sum(dm);
Po3_Rot = sum(Po3_profile.*dm)/sum(dm);
Ps3_Rot = sum(Y1_HubTip.*dm)/sum(dm);
Eff_Rot_Only = sum(EffMA_Map.*dm)/sum(dm); % Efficiency for Rotor only

Power_MA_Rot = Cp_air*sum((To3_Map-To1_avg).*dm); % Power for Rotor only

% Calc Mass Flow Old
Flow_Noz_Stag = pdata(51);
Flow_Noz_Stat = pdata(52);
Ds = Flow_Noz_Stag-Flow_Noz_Stat;
Term1 = Anoz*Cnoz;
Term2 = sqrt(abs(2*Flow_Noz_Stag*Ds/(R_air*To1_avg)));
Term3 = 1-(3/(4*Gam_Air))*(Ds/Flow_Noz_Stag);
m_dot_old = Term1*Term2*Term3;

% Calc Mass Flow X
Flow_Noz_Stag = pdata(51);
Flow_Noz_Stat = pdata(52);
\[X_{2_noz} = \text{abs}(1 - (\text{Flow_Noz_Stat}/\text{Flow_Noz_Stag})^{((\text{Gam_Air}-1)/\text{Gam_Air})}); \]
\[V_{\text{noz}} = \sqrt{2 \cdot C_{p_air} \cdot T_{\text{1_avg}} \cdot X_{2_noz}}; \]
\[\rho_{\text{noz}} = \left(\frac{\text{Flow_Noz_Stag}}{(R_\text{air} \cdot T_{\text{1_avg}})}\right)^{((\text{Flow_Noz_Stat}/\text{Flow_Noz_Stag})^{1/\text{Gam_Air}})}; \]
\[m_{\text{dot}} = \rho_{\text{noz}} \cdot V_{\text{noz}} \cdot A_{\text{noz}} \cdot C_{\text{noz}}; \]
\[m_{\text{dot_ref}} = m_{\text{dot}} \cdot (\sqrt{\Theta_{\text{ref}}})/\Delta_{\text{ref}}; \]
\[m_{\text{dot_scale}} = m_{\text{dot_ref}} \cdot ((\text{Scale_RPM})^2); \]
\[% \text{calc_Pr} \]
\[Pr = P_{\text{03}}/P_{\text{1_avg}}; \]
\[Pr_{\text{Rot}} = P_{\text{03_Rot}}/P_{\text{1_avg}}; \]
\[Ps_{\text{3_Pol}} = P_{\text{3}}/P_{\text{1_avg}}; \]
\[Pr_{\text{Scale}} = 1 + (Pr - 1) \cdot (\text{Scale_RPM}^2); \]
\[Pr_{\text{Rot_Scale}} = 1 + (Pr_{\text{Rot}} - 1) \cdot (\text{Scale_RPM}^2); \]
\[Ps_{\text{3_Pol_Scale}} = 1 + (Ps_{\text{3_Pol}} - 1) \cdot (\text{Scale_RPM}^2); \]
\[% \text{Calc_eff1} \]
\[\text{Eff1} = ((T_{\text{1_avg}}/(T_{\text{03}} - T_{\text{1_avg}}))) \cdot (Pr^{((\text{Gam_Air}-1)/\text{Gam_Air})-1}) \cdot 100; \]
\[% \text{Calc_eff2} \]
\[V_{t} = \sqrt{2 \cdot C_{p_air} \cdot T_{\text{1_avg}}}; \]
\[B_{\text{inf}} = (\text{Gam_Air}/(\text{Gam_Air}-1)) \cdot (P_{\text{1_avg}}/(V_{t} \cdot (m_{\text{dot}}/A_{\text{inf}}))); \]
\[X_{\text{inf}} = \sqrt{(B_{\text{inf}}^2 + 1) - B_{\text{inf}}}; \]
\[\text{Eff2} = ((T_{\text{1_avg}}/(T_{\text{03}} - T_{\text{1_avg}}))) \cdot (2 \cdot B_{\text{inf}} \cdot X_{\text{inf}} \cdot (P_{\text{3}}/P_{\text{1_avg}})^{((\text{Gam_Air}-1)/\text{Gam_Air})-1}) \cdot 100; \]
\[% \text{Calc_Power} \]
\[\text{Power} = m_{\text{dot}} \cdot C_{p_air} \cdot (T_{\text{03}} - T_{\text{1_avg}}); \]
\[\text{Power_REF} = \text{Power}/(\Delta_{\text{ref}} \cdot \sqrt{\Theta_{\text{ref}}}); \]
\[\text{Power_MA_REF} = \text{Power_MA}/(\Delta_{\text{ref}} \cdot \sqrt{\Theta_{\text{ref}}}); \]
\[\text{Power_MA_Rot_REF} = \text{Power_MA_Rot}/(\Delta_{\text{ref}} \cdot \sqrt{\Theta_{\text{ref}}}); \]
\[% \text{Relative_Humidity} \]
\[T_{\text{1_avg_C}} = T_{\text{1_avg}} + K_{\text{ToC}}; \]
PVapSat1_Bar = XSteam('psat_T',To1_avg_C);
PVapSat1 = PVapSat1_Bar*BarToPa;
TWetBulb_C=TWetBulb+kTToC;
PVapSat2_Bar = XSteam('psat_T',TWetBulb_C);
PVapSat2 = PVapSat2_Bar*BarToPa;
OmegaSat = (R_air/R_wat)*PVapSat2/(P_Atmos-PVapSat2);
hVapWet_kjkg = XSteam('hV_T',TWetBulb_C);
hVapWet=hVapWet_kjkg*1000;
hLiqWet_kjkg = XSteam('hL_T',TWetBulb_C);
hLiqWet=hLiqWet_kjkg*1000;
hVapDry_kjkg = XSteam('hV_T',To1_avg_C);
hVapDry=hVapDry_kjkg*1000;
OmegaRel = (Cp_air*(T_WetBulb-To1_avg)+OmegaSat*(hVapWet-hLiqWet))/(hVapDry-
hLiqWet);
PVap1 = OmegaRel*Po1_avg/((R_air/R_wat)+ OmegaRel);
PVap1_Bar = PVap1*PaToBar;
RelHumid = 100*PVap1/PVapSat1;
CpVap_si = XSteam('Cp_pT',PVap1_Bar,To1_avg_C);
CpVap= CpVap_si*1000;
Cp_air = (Cp_Ref+OmegaRel*CpVap)/(1+OmegaRel);
R_air = (R_Ref+OmegaRel*R_wat)/(1+OmegaRel);
Cv_Air = Cp_air-R_air;
Gam_Air = Cp_air/Cv_Air;
% Update Figures
%Raw Pressure
pformat = "P1 = %f P2 = %f\nP3 = %f P4 = %f\nP5 = %f P6 = %f\nP7 = %f P8 = %f\nP9 = %f P10 = %f\nP11 = %f P12 = %f\nP13 = %f P14 = %f\nP15 = %f P16 = %f\nP17 = %f P18 = %f\nP19 = %f P20 = %f\nP21 = %f P22 = %f\nP23 = %f P24 = %f\nP25 = %f P26 = %f\nP27 = %f P28 = %f\nP29 = %f"
\[P_{30} = \%f\n P_{31} = \%f\n P_{32} = \%f\n P_{33} = \%f\n P_{34} = \%f\n P_{35} = \%f\n P_{36} = \%f\n P_{37} = \%f\n P_{38} = \%f\n P_{39} = \%f\n P_{40} = \%f\n P_{41} = \%f\n P_{42} = \%f\n P_{43} = \%f\n P_{44} = \%f\n P_{45} = \%f\n P_{46} = \%f\n P_{47} = \%f\n P_{48} = \%f\n P_{49} = \%f\n P_{50} = \%f\n P_{51} = \%f\n P_{52} = \%f\n P_{53} = \%f\n P_{54} = \%f\n P_{55} = \%f\n P_{56} = \%f\n \]

\[P_1 = \text{pdata}(1); P_2 = \text{pdata}(2); P_3 = \text{pdata}(3); P_4 = \text{pdata}(4); P_5 = \text{pdata}(5); P_6 = \text{pdata}(6); P_7 = \text{pdata}(7); P_8 = \text{pdata}(8); P_9 = \text{pdata}(9); P_{10} = \text{pdata}(10); P_{11} = \text{pdata}(11); P_{12} = \text{pdata}(12); P_{13} = \text{pdata}(13); P_{14} = \text{pdata}(14); P_{15} = \text{pdata}(15); P_{16} = \text{pdata}(16); P_{17} = \text{pdata}(17); P_{18} = \text{pdata}(18); P_{19} = \text{pdata}(19); P_{20} = \text{pdata}(20); P_{21} = \text{pdata}(21); P_{22} = \text{pdata}(22); P_{23} = \text{pdata}(23); P_{24} = \text{pdata}(24); P_{25} = \text{pdata}(25); P_{26} = \text{pdata}(26); P_{27} = \text{pdata}(27); P_{28} = \text{pdata}(28); P_{29} = \text{pdata}(29); P_{30} = \text{pdata}(30); P_{31} = \text{pdata}(31); P_{32} = \text{pdata}(32); P_{33} = \text{pdata}(33); P_{34} = \text{pdata}(34); P_{35} = \text{pdata}(35); P_{36} = \text{pdata}(36); P_{37} = \text{pdata}(37); P_{38} = \text{pdata}(38); P_{39} = \text{pdata}(39); P_{40} = \text{pdata}(40); P_{41} = \text{pdata}(41); P_{42} = \text{pdata}(42); P_{43} = \text{pdata}(43); P_{44} = \text{pdata}(44); P_{45} = \text{pdata}(45); P_{46} = \text{pdata}(46); P_{47} = \text{pdata}(47); P_{48} = \text{pdata}(48); P_{49} = \text{pdata}(49); P_{50} = \text{pdata}(50); P_{51} = \text{pdata}(51); P_{52} = \text{pdata}(52); P_{53} = \text{pdata}(53); P_{54} = \text{pdata}(54); P_{55} = \text{pdata}(55); P_{56} = \text{pdata}(56); \]

\[\text{pstr} = \text{sprintf}(\text{pformat}, P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9, P_{10}, P_{11}, P_{12}, P_{13}, P_{14}, P_{15}, P_{16}, P_{17}, P_{18}, P_{19}, P_{20}, P_{21}, P_{22}, P_{23}, P_{24}, P_{25}, P_{26}, P_{27}, P_{28}, P_{29}, P_{30}, P_{31}, P_{32}, P_{33}, P_{34}, P_{35}, P_{36}, P_{37}, P_{38}, P_{39}, P_{40}, P_{41}, P_{42}, P_{43}, P_{44}, P_{45}, P_{46}, P_{47}, P_{48}, P_{49}, P_{50}, P_{51}, P_{52}, P_{53}, P_{54}, P_{55}, P_{56}); \]

\[\% \text{Raw Temperature} \]

\[\text{tformat} = T1 = \%f\n T2 = \%f\n T3 = \%f\n T4 = \%f\n T5 = \%f\n T6 = \%f\n T7 = \%f\n T8 = \%f\n T9 = \%f\n T10 = \%f\n T11 = \%f\n T12 = \%f\n T13 = \%f\n T14 = \%f\n T15 = \%f\n T16 = \%f\n T17 = \%f\n T18 = \%f\n T19 = \%f\n T20 = \%f\n T21 = \%f\n T22 = \%f\n T23 = \%f\n T24 = \%f\n T25 = \%f\n \]

\[T_1 = \text{tdata}(1); T_2 = \text{tdata}(2); T_3 = \text{tdata}(3); T_4 = \text{tdata}(4); T_5 = \text{tdata}(5); T_6 = \text{tdata}(6); T_7 = \text{tdata}(7); T_8 = \text{tdata}(8); T_9 = \text{tdata}(9); T_{10} = \text{tdata}(10); T_{11} = \text{tdata}(11); T_{12} = \text{tdata}(12); T_{13} = \text{tdata}(13); T_{14} = \text{tdata}(14); T_{15} = \text{tdata}(15); T_{16} = \text{tdata}(16); T_{17} = \text{tdata}(17); T_{18} = \text{tdata}(18); T_{19} = \text{tdata}(19); T_{20} = \text{tdata}(20); T_{21} = \text{tdata}(21); T_{22} = \text{tdata}(22); T_{23} = \text{tdata}(23); T_{24} = \text{tdata}(24); T_{25} = \text{tdata}(25); \]
tstr = sprintf(tformat, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25);
tread = findobj('Tag', 'rawtemp');

% RPM
rpmtxt = findobj('Tag', 'rpmvalue');

% All Update
pnumbers.String = pstr;
tread.String = tstr;
rpmtxt.String = num2str(RPM);
refrpm.String = num2str(RPM_ref);
pops.String = num2str(d_P1);
axial.String = num2str(U_inf);
machin.String = num2str(MachinRel);
effstage.String = num2str(Eff_Stage);
effrot.String = num2str(Eff_Rot_Only);
mfraw.String = num2str(m_dot);
mfscale.String = num2str(m_dot_scale);
prraw.String = num2str(Pr);
prscale.String = num2str(Pr_Scale);
rhumid.String = num2str(RelHumid);
clearpoints(pline);
addpoints(pline, P_HubTip, Po3_profile);
drawnow

clearpoints(tline);
addpoints(tline, X_HubTip, To3_array);
drawnow

% Save Function
save('testvariables')
if save_trigger == 1
 date = datestr(now, 'dd-mmm-yyyy');
 Filename = sprintf('%d_pc_Spreadsheet_%s.txt',Spdpct,date);
if firstsave == 0
Vth3_21 [m/s]	Vth3_22 [m/s]	Vth3_23 [m/s]	Vth3_24 [m/s]	Vth3_25 [m/s]	Vth3_26 [m/s]	Vth3_27 [m/s]	Vth3_28 [m/s]	Vth3_29 [m/s]	Vth3_30 [m/s]	Vz3_11 [m/s]	Vz3_12 [m/s]	Vz3_13 [m/s]	Vz3_14 [m/s]	Vz3_15 [m/s]	Vz3_16 [m/s]	Vz3_17 [m/s]	Vz3_18 [m/s]	Vz3_19 [m/s]	Vz3_20 [m/s]	Vz3_21 [m/s]	Vz3_22 [m/s]	Vz3_23 [m/s]	Vz3_24 [m/s]	Vz3_25 [m/s]	Vz3_26 [m/s]	Vz3_27 [m/s]	Vz3_28 [m/s]	Vz3_29 [m/s]	Vz3_30 [m/s]	m_dot_old	Power_Ref_old	Power_old	mdot_dm.Stage	mdot_dm.Rotor		
pdata(29) pdata(30) pdata(31) pdata(32) pdata(33) pdata(34) pdata(35) pdata(36)
pdata(37) pdata(38) pdata(39) pdata(40) pdata(41) pdata(42) pdata(43) pdata(44)
pdata(45) pdata(46) pdata(47) pdata(48) pdata(50) pdata(51) tdata(1) tdata(2)
tdata(16) tdata(17) tdata(18) tdata(19) tdata(20) tdata(21) To3_Map(1) To3_Map(2)
To3_Map(3) To3_Map(4) To3_Map(5) To3_Map(6) To3_Map(7) To3_Map(8) To3_Map(9)
To3_Map(10) To3_Map(11) To3_Map(12) To3_Map(13) To3_Map(14) To3_Map(15) To3_Map(16)
To3_Map(17) To3_Map(18) To3_Map(19) To3_Map(20) tdata(1) tdata(2) tdata(3) tdata(4)
tdata(5) tdata(6) tdata(7) tdata(8) tdata(9) tdata(10) tdata(11) tdata(12)
tdata(13) tdata(14) tdata(15) tdata(16) EffMA_Map(1) EffMA_Map(2) EffMA_Map(3)
EffMA_Map(16) EffMA_Map(17) EffMA_Map(18) EffMA_Map(19) EffMA_Map(20) V_th3(1)
V_th3(2) V_th3(3) V_th3(4) V_th3(5) V_th3(6) V_th3(7) V_th3(8) V_th3(9) V_th3(10)
V_th3(11) V_th3(12) V_th3(13) V_th3(14) V_th3(15) V_th3(16) V_th3(17) V_th3(18)
V_th3(19) V_th3(20) Vz3(1) Vz3(2) Vz3(3) Vz3(4) Vz3(5) Vz3(6) Vz3(7) Vz3(8) Vz3(9)
Vz3(10) Vz3(11) Vz3(12) Vz3(13) Vz3(14) Vz3(15) Vz3(16) Vz3(17) Vz3(18) Vz3(19)
Vz3(20) m_dot_old Power Power_REF mdot3 mdot3_Rot]; % Power Power_REF runnum
 dlmwrite(Filename,txt,'');
 dlmwrite(Filename,vars,'delimiter','	','-append');
runnum = runnum +1;
run_count = num2str(runnum);
run=findobj('Tag','runnumber');
run.String = run_count;
firstsave = 1;
else
 vars=[runnum Eff1 Eff_Rot_Only Eff_Stage Scale_RPM m_dot_scale Pr_Scale
 PrRot_Scale Ps3_Pol_Scale m_dot_ref RPM_ref 0 Power_MA_REF Power_MA_Rot_REF
 Power_MA Power_MA_Rot Theta_ref Delta_ref Gam_Air Cp_air R_air OmegaRel OmegaSat
 RelHumid Pr PrRot Ps3_Pol 0 RPM m_dot tdata(1) tdata(2) To1_avg 0 To3 d_P1 Pol1_avg
97
Pol_avg Ps3 Po3 To3_Rot Ps3_Rot Po3_Rot pdata(1) pdata(2) pdata(3) pdata(4) pdata(5) pdata(6) pdata(7) pdata(8) pdata(9) pdata(10) pdata(11) pdata(12) pdata(13) pdata(14) pdata(15) pdata(16) pdata(17) pdata(18) pdata(19) pdata(20) pdata(21) pdata(22) pdata(23) pdata(24) pdata(25) pdata(26) pdata(27) pdata(28) pdata(29) pdata(30) pdata(31) pdata(32) pdata(33) pdata(34) pdata(35) pdata(36) pdata(37) pdata(38) pdata(39) pdata(40) pdata(41) pdata(42) pdata(43) pdata(44) pdata(45) pdata(46) pdata(47) pdata(48) pdata(50) pdata(51) tdata(1) tdata(2) tdata(16) tdata(17) tdata(18) tdata(19) tdata(20) tdata(21) To3_Map(1) To3_Map(2) To3_Map(3) To3_Map(4) To3_Map(5) To3_Map(6) To3_Map(7) To3_Map(8) To3_Map(9) To3_Map(10) To3_Map(11) To3_Map(12) To3_Map(13) To3_Map(14) To3_Map(15) To3_Map(16) To3_Map(17) To3_Map(18) To3_Map(19) To3_Map(20) tdata(1) tdata(2) tdata(3) tdata(4) tdata(5) tdata(6) tdata(7) tdata(8) tdata(9) tdata(10) tdata(11) tdata(12) tdata(13) tdata(14) tdata(15) tdata(16) EffMA_Map(1) EffMA_Map(2) EffMA_Map(3) EffMA_Map(4) EffMA_Map(5) EffMA_Map(6) EffMA_Map(7) EffMA_Map(8) EffMA_Map(9) EffMA_Map(10) EffMA_Map(11) EffMA_Map(12) EffMA_Map(13) EffMA_Map(14) EffMA_Map(15) EffMA_Map(16) EffMA_Map(17) EffMA_Map(18) EffMA_Map(19) EffMA_Map(20) V_th3(1) V_th3(2) V_th3(3) V_th3(4) V_th3(5) V_th3(6) V_th3(7) V_th3(8) V_th3(9) V_th3(10) V_th3(11) V_th3(12) V_th3(13) V_th3(14) V_th3(15) V_th3(16) V_th3(17) V_th3(18) V_th3(19) V_th3(20) Vz3(1) Vz3(2) Vz3(3) Vz3(4) Vz3(5) Vz3(6) Vz3(7) Vz3(8) Vz3(9) Vz3(10) Vz3(11) Vz3(12) Vz3(13) Vz3(14) Vz3(15) Vz3(16) Vz3(17) Vz3(18) Vz3(19) Vz3(20) m_dot_old Power Power_REF mdot3 mdot3_Rot;
dlmwrite(Filename,vars,'delimiter','	','-append');
runnum = runnum +1;
run_count = num2str(runnum);
run=findobj('Tag','runnumber');
run.String = run_count;
end
save_trigger = 0;
end
6. **Save_Run.m**

This script triggers the program to save the workspace variables in a text file.

```matlab
%% Save Run Function
function Save_Run(Save_btn,tdata,pdata)
    global save_trigger
    save_trigger=1;
end
```

7. **Run_Stopmulti.m**

This script stops the data acquisition process.

```matlab
function Run_Stopmulti(p_stop_btn,~)
    % Stop Pressure Brick Run
    global pressurestat ni_set
    pressurestat = 2;
    stop(ni_set)
    h=findobj('Tag','atmp');
    h.Enable = 'on';
    h=findobj('Tag','spd');
    h.Enable = 'on';
    h=findobj('Tag','design');
```
8. **Reset_num.m**

This script resets the run number.

```matlab
%% Reset run number function
function Reset_num(Resetnum_btn,~)  
global runnum run_count run_num;  
runnum = 1;  
run_count = sprintf('%d',runnum);  
run = findobj('Tag','runnumber');  
run.String = run_count;  
end
```
9. **Pulsewidth_main.m**

This script reads the pulse width from the NI 9402 counter-totalizer module and converts it to RPM.

```matlab
%% Addlistener function for counter-totalizer module
function [RPM] = Pulsewidth_main(src,event)
% Reads pulsewidth data from module and converts to RPM
global RPMr
pw = event.Data(1);
RPM = [60/pw];
% rpmtxt=findobj('Tag','rpmvalue');
% rpmtxt.String=sprintf('%d',RPM);
RPMr=RPM;
end
```

10. **Temp_readings_main.m**

This script reads the temperature from the NI 9214 thermocouple modules.

```matlab
%% Addlistener function for thermocouple modules
function [tdata] = Temp_readings_main(src,event)
% Reads temperature data from modules
global tdatar

tdata = [1:1:25];
```
for i=1:25;
 s=i+1;
 tdata(i) = event.Data(s);
end
end
tdatar=tdata;

11. **XSteam.m**

This script provides the water and steam properties tables. It was created by Magnus Holmgren and www.x-eng.com and can be found on MATLAB’s file exchange [16].
APPENDIX F. DAS OUTPUT FILES

The following is the output text files from both the HPVEE program and the MATLAB program compared to each other.

<table>
<thead>
<tr>
<th>Run no</th>
<th>Eff Classic Stage</th>
<th>Eff Rot Mass Avg</th>
<th>Eff Stage Mass Avg</th>
<th>RPM Scale</th>
<th>m_dot Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.04673394</td>
<td>0.240467735</td>
<td>0.240467735</td>
<td>1.015405422</td>
<td>0.39577499</td>
</tr>
<tr>
<td>2</td>
<td>24.03692335</td>
<td>0.24036961</td>
<td>0.24036961</td>
<td>1.015298446</td>
<td>0.277898303</td>
</tr>
<tr>
<td>3</td>
<td>24.05579545</td>
<td>0.240558334</td>
<td>0.240558334</td>
<td>1.015496509</td>
<td>0.277949276</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23.697</td>
<td>0.23697</td>
<td>0.23697</td>
<td>1.0209</td>
<td>0.052365</td>
</tr>
<tr>
<td>2</td>
<td>23.689</td>
<td>0.23689</td>
<td>0.23689</td>
<td>1.0206</td>
<td>0.052349</td>
</tr>
<tr>
<td>3</td>
<td>23.68</td>
<td>0.2368</td>
<td>0.2368</td>
<td>1.0201</td>
<td>0.052325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PR Stage Scale</th>
<th>PR Rot Scale</th>
<th>Ps3/Po1_Stage_Scale</th>
<th>m_dot_REF[kg/s]</th>
<th>RPM_REF</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.509911123</td>
<td>1.509911123</td>
<td>1.000124396</td>
<td>0.389770413</td>
<td>23635.87932</td>
<td>0</td>
</tr>
<tr>
<td>1.509817765</td>
<td>1.509817765</td>
<td>1.000107392</td>
<td>0.273710951</td>
<td>23638.36968</td>
<td>0</td>
</tr>
<tr>
<td>1.509996529</td>
<td>1.509996529</td>
<td>1.000095934</td>
<td>0.273707761</td>
<td>23633.75924</td>
<td>0</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5153</td>
<td>1.5153</td>
<td>0.99999</td>
<td>0.051295</td>
<td>23509</td>
<td>0</td>
</tr>
<tr>
<td>1.5149</td>
<td>1.5149</td>
<td>0.99999</td>
<td>0.051295</td>
<td>23517</td>
<td>0</td>
</tr>
<tr>
<td>1.5145</td>
<td>1.5145</td>
<td>0.99999</td>
<td>0.051294</td>
<td>23528</td>
<td>0</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1448592.919</td>
<td>14485.68776</td>
<td>1467671.607</td>
<td>14676.47146</td>
<td>1.031987298</td>
<td>0.997344871</td>
</tr>
<tr>
<td>1449143.869</td>
<td>14491.19717</td>
<td>1468126.442</td>
<td>14681.01973</td>
<td>1.031842066</td>
<td>0.997344833</td>
</tr>
<tr>
<td>1448140.007</td>
<td>14481.15872</td>
<td>1467330.694</td>
<td>14673.06238</td>
<td>1.032131104</td>
<td>0.99735557</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.46E+06</td>
<td>14648</td>
<td>1.48E+06</td>
<td>14776</td>
<td>1.021</td>
<td>0.9983</td>
</tr>
<tr>
<td>1.47E+06</td>
<td>14652</td>
<td>1.48E+06</td>
<td>14779</td>
<td>1.0208</td>
<td>0.9983</td>
</tr>
<tr>
<td>1.47E+06</td>
<td>14657</td>
<td>1.48E+06</td>
<td>14782</td>
<td>1.0206</td>
<td>0.9983</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gam</th>
<th>Cp</th>
<th>R</th>
<th>OmegaRel</th>
<th>OmegaSat</th>
<th>Humidity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.399195713</td>
<td>1009.395121</td>
<td>287.9841621</td>
<td>0.005671887</td>
<td>0.008690992</td>
<td>31.65001169</td>
</tr>
<tr>
<td>1.399193227</td>
<td>1009.409874</td>
<td>287.9870895</td>
<td>0.005688853</td>
<td>0.008690984</td>
<td>31.82347845</td>
</tr>
<tr>
<td>1.399198046</td>
<td>1009.38127</td>
<td>287.9814134</td>
<td>0.005655955</td>
<td>0.008691072</td>
<td>31.48770606</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.399</td>
<td>1010.6</td>
<td>288.22</td>
<td>0.0070487</td>
<td>0.008698</td>
<td>48.125</td>
</tr>
<tr>
<td>1.399</td>
<td>1010.6</td>
<td>288.23</td>
<td>0.0070712</td>
<td>0.0086981</td>
<td>48.438</td>
</tr>
<tr>
<td>1.399</td>
<td>1010.7</td>
<td>288.23</td>
<td>0.0071067</td>
<td>0.0086983</td>
<td>48.939</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PrStage</th>
<th>PrRot</th>
<th>Ps3/Po1 Stage</th>
<th>Blank</th>
<th>RPM</th>
<th>m_dot_X</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.494556063</td>
<td>1.494556063</td>
<td>1.00012065</td>
<td>0</td>
<td>24010.92769</td>
<td>0.382663511</td>
</tr>
<tr>
<td>1.494569719</td>
<td>1.494569719</td>
<td>1.00010418</td>
<td>0</td>
<td>24011.76779</td>
<td>0.268739127</td>
</tr>
<tr>
<td>1.494550165</td>
<td>1.494550165</td>
<td>1.000093029</td>
<td>0</td>
<td>24010.4467</td>
<td>0.268701257</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4944</td>
<td>1.4944</td>
<td>1</td>
<td>0</td>
<td>23755</td>
<td>0.050678</td>
</tr>
<tr>
<td>1.4944</td>
<td>1.4944</td>
<td>0.99999</td>
<td>0</td>
<td>23760</td>
<td>0.050682</td>
</tr>
<tr>
<td>1.4944</td>
<td>1.4944</td>
<td>0.99999</td>
<td>0</td>
<td>23768</td>
<td>0.050689</td>
</tr>
<tr>
<td>HPVEE</td>
<td>Blank</td>
<td>To1</td>
<td>Blank</td>
<td>To3_STAGE</td>
<td>(Po1-Ps1)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>296.5381836</td>
<td>0</td>
<td>446.3360213</td>
<td>-7.618632436</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>296.4966797</td>
<td>0</td>
<td>446.3383535</td>
<td>-6.359943867</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>296.5772461</td>
<td>0</td>
<td>446.3361847</td>
<td>-2.535009146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATLAB</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>444.07</td>
<td>443.98</td>
<td>293.19</td>
<td>0</td>
<td>443.39</td>
<td>1.9067</td>
</tr>
<tr>
<td>444.03</td>
<td>443.9</td>
<td>293.14</td>
<td>0</td>
<td>443.36</td>
<td>1.9067</td>
</tr>
<tr>
<td>444.06</td>
<td>443.82</td>
<td>293.05</td>
<td>0</td>
<td>443.28</td>
<td>1.0323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPVEE</th>
<th>Po1</th>
<th>Ps3_STAGE</th>
<th>Po3_STAGE</th>
<th>To3_ROT</th>
<th>Ps3_ROT</th>
</tr>
</thead>
<tbody>
<tr>
<td>101121.6933</td>
<td>101114.0747</td>
<td>101126.2741</td>
<td>151120.6533</td>
<td>446.3360213</td>
<td>101126.2741</td>
</tr>
<tr>
<td>101120.4142</td>
<td>101114.0543</td>
<td>101124.5883</td>
<td>151122.0037</td>
<td>446.3383535</td>
<td>101124.5883</td>
</tr>
<tr>
<td>101117.8575</td>
<td>101115.3225</td>
<td>101124.7291</td>
<td>151121.9219</td>
<td>446.3361847</td>
<td>101124.7291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATLAB</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.51E+05</td>
<td>443.39</td>
<td>1.01E+05</td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.51E+05</td>
<td>443.36</td>
<td>1.01E+05</td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.51E+05</td>
<td>443.28</td>
<td>1.01E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>151120.6533</td>
<td>101122.9474</td>
<td>101120.4156</td>
<td>101112.6624</td>
<td>101112.6848</td>
<td>101120.4156</td>
</tr>
<tr>
<td>151122.0037</td>
<td>101125.5099</td>
<td>101120.4156</td>
<td>101115.2468</td>
<td>101110.0996</td>
<td>101115.3021</td>
</tr>
<tr>
<td>151121.9219</td>
<td>101130.6043</td>
<td>101117.8304</td>
<td>101115.2468</td>
<td>101104.9539</td>
<td>101115.3021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATLAB</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.51E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td>1.51E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td>1.51E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>HPVEE</td>
<td>101107.7337</td>
<td>101122.971</td>
<td>101120.4156</td>
<td>101125.4936</td>
<td>101125.5562</td>
</tr>
<tr>
<td></td>
<td>101112.8065</td>
<td>101122.971</td>
<td>101117.8575</td>
<td>101125.4936</td>
<td>101130.6967</td>
</tr>
<tr>
<td></td>
<td>101115.3429</td>
<td>101120.4156</td>
<td>101115.2994</td>
<td>101128.0326</td>
<td>101122.9859</td>
</tr>
<tr>
<td>MATLAB</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td></td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td></td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>151132.5251</td>
<td>151137.369</td>
<td>151134.9249</td>
<td>151133.1596</td>
<td>151132.8518</td>
<td>151120.4156</td>
</tr>
<tr>
<td></td>
<td>151132.5251</td>
<td>151137.369</td>
<td>151134.9249</td>
<td>151133.1596</td>
<td>151127.8773</td>
<td>151120.4156</td>
</tr>
<tr>
<td></td>
<td>151130.1032</td>
<td>151139.7909</td>
<td>151132.5067</td>
<td>151130.6108</td>
<td>151140.3135</td>
<td>151130.9443</td>
</tr>
<tr>
<td>MATLAB</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>151110.8278</td>
<td>151120.4156</td>
<td>151120.4156</td>
<td>151111.3454</td>
<td>151111.5831</td>
<td>151111.3324</td>
</tr>
<tr>
<td></td>
<td>151110.8278</td>
<td>151120.4156</td>
<td>151120.4156</td>
<td>151111.3454</td>
<td>151120.4156</td>
<td>151111.3324</td>
</tr>
<tr>
<td></td>
<td>151110.8278</td>
<td>151120.4156</td>
<td>151110.9325</td>
<td>151120.4156</td>
<td>151111.5831</td>
<td>151111.3324</td>
</tr>
<tr>
<td>MATLAB</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>HPVEE</td>
<td>151120.4156</td>
<td>151111.6143</td>
<td>151111.2364</td>
<td>151111.2231</td>
<td>151111.5885</td>
<td>151111.4166</td>
</tr>
<tr>
<td></td>
<td>151120.4156</td>
<td>151111.6143</td>
<td>151120.4156</td>
<td>151111.2231</td>
<td>151120.4156</td>
<td>151102.4176</td>
</tr>
<tr>
<td></td>
<td>151120.4156</td>
<td>151111.6143</td>
<td>151120.4156</td>
<td>151102.0306</td>
<td>151111.5885</td>
<td>151111.4166</td>
</tr>
<tr>
<td>MATLAB</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
<td>1.51E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>151111.3165</td>
<td>101111.1965</td>
<td>101111.7605</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101130.5712</td>
</tr>
<tr>
<td></td>
<td>151120.4156</td>
<td>101111.1965</td>
<td>101111.7605</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101120.4156</td>
</tr>
<tr>
<td></td>
<td>151120.4156</td>
<td>101111.1965</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101130.594</td>
<td>101130.5712</td>
</tr>
<tr>
<td>MATLAB</td>
<td>1.51E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td></td>
<td>1.51E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>101130.5098</td>
<td>101120.4156</td>
<td>101130.6005</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101120.4156</td>
</tr>
<tr>
<td></td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101110.2017</td>
<td>101120.4156</td>
<td>101120.4156</td>
</tr>
<tr>
<td></td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101130.6005</td>
<td>101120.4156</td>
<td>101110.1191</td>
<td>101120.4156</td>
</tr>
<tr>
<td>MATLAB</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td></td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td></td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101130.4613</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td></td>
</tr>
<tr>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101130.4613</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101120.4156</td>
<td></td>
</tr>
<tr>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101130.4613</td>
<td>101110.6427</td>
<td>101110.2545</td>
<td>101120.4156</td>
<td></td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td></td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td></td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P48 [Pa]</th>
<th>P50 [Pa]</th>
<th>P51 [Pa]</th>
<th>To_inf5</th>
<th>To_inf6</th>
<th>Tcase1down</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101120.4156</td>
<td>101120.4156</td>
<td>101131.3628</td>
<td>9.91E+37</td>
<td>296.1890625</td>
<td>9.91E+37</td>
</tr>
<tr>
<td>101120.4156</td>
<td>101125.8767</td>
<td>101131.3628</td>
<td>9.91E+37</td>
<td>296.2134766</td>
<td>9.91E+37</td>
</tr>
<tr>
<td>101110.877</td>
<td>101125.8767</td>
<td>101131.3628</td>
<td>9.91E+37</td>
<td>296.2037109</td>
<td>9.91E+37</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>444.07</td>
<td>443.98</td>
<td>293.05</td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>444.03</td>
<td>443.9</td>
<td>293</td>
</tr>
<tr>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>1.01E+05</td>
<td>444.06</td>
<td>443.82</td>
<td>292.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tcase2down</th>
<th>Tcase3down</th>
<th>Tcase1up</th>
<th>Tcase2up</th>
<th>Tcase3up</th>
<th>To_11[K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>446.6513765</td>
</tr>
<tr>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>446.6493591</td>
</tr>
<tr>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>446.6553892</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293.06</td>
<td>293.39</td>
<td>293.09</td>
<td>293.21</td>
<td>292.65</td>
<td>443.9</td>
</tr>
<tr>
<td>293.01</td>
<td>293.33</td>
<td>293.04</td>
<td>293.21</td>
<td>292.65</td>
<td>443.86</td>
</tr>
<tr>
<td>292.94</td>
<td>293.27</td>
<td>292.95</td>
<td>293.19</td>
<td>292.63</td>
<td>443.85</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>HPVEE</td>
<td>446.662634</td>
<td>446.6809559</td>
<td>446.6639798</td>
<td>446.5955725</td>
<td>446.3970116</td>
</tr>
<tr>
<td></td>
<td>446.6582214</td>
<td>446.6721668</td>
<td>446.6551908</td>
<td>446.587422</td>
<td>446.3915577</td>
</tr>
<tr>
<td></td>
<td>446.6597006</td>
<td>446.6654379</td>
<td>446.6492702</td>
<td>446.5836035</td>
<td>446.3904222</td>
</tr>
<tr>
<td>MATLAB</td>
<td>443.77</td>
<td>443.51</td>
<td>443.38</td>
<td>443.2</td>
<td>443.09</td>
</tr>
<tr>
<td></td>
<td>443.72</td>
<td>443.46</td>
<td>443.34</td>
<td>443.19</td>
<td>443.11</td>
</tr>
<tr>
<td></td>
<td>443.68</td>
<td>443.36</td>
<td>443.25</td>
<td>443.09</td>
<td>442.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>446.1051405</td>
<td>446.1266604</td>
<td>446.2127397</td>
<td>446.2859072</td>
<td>446.3752</td>
<td>446.3233287</td>
</tr>
<tr>
<td></td>
<td>446.1067555</td>
<td>446.1293124</td>
<td>446.2195402</td>
<td>446.2962337</td>
<td>446.3897648</td>
<td>446.3266548</td>
</tr>
<tr>
<td></td>
<td>446.0953511</td>
<td>446.1188155</td>
<td>446.2126731</td>
<td>446.2924521</td>
<td>446.3898162</td>
<td>446.3336224</td>
</tr>
<tr>
<td>MATLAB</td>
<td>443.29</td>
<td>443.3</td>
<td>443.37</td>
<td>443.43</td>
<td>443.5</td>
<td>443.18</td>
</tr>
<tr>
<td></td>
<td>443.24</td>
<td>443.26</td>
<td>443.34</td>
<td>443.4</td>
<td>443.49</td>
<td>443.18</td>
</tr>
<tr>
<td></td>
<td>443.17</td>
<td>443.19</td>
<td>443.28</td>
<td>443.35</td>
<td>443.45</td>
<td>443.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>446.2761731</td>
<td>446.1948234</td>
<td>446.1676214</td>
<td>446.1426249</td>
<td>446.115356</td>
<td>446.103994</td>
</tr>
<tr>
<td></td>
<td>446.269282</td>
<td>446.2163165</td>
<td>446.1867354</td>
<td>446.15556</td>
<td>446.1215505</td>
<td>446.1073799</td>
</tr>
<tr>
<td></td>
<td>446.2825371</td>
<td>446.2086605</td>
<td>446.1810653</td>
<td>446.1546645</td>
<td>446.1258636</td>
<td>446.1138633</td>
</tr>
<tr>
<td>MATLAB</td>
<td>442.89</td>
<td>443.88</td>
<td>443.81</td>
<td>443.61</td>
<td>443.4</td>
<td>443.31</td>
</tr>
<tr>
<td></td>
<td>442.89</td>
<td>443.8</td>
<td>443.73</td>
<td>443.54</td>
<td>443.34</td>
<td>443.25</td>
</tr>
<tr>
<td></td>
<td>442.79</td>
<td>443.73</td>
<td>443.67</td>
<td>443.49</td>
<td>443.29</td>
<td>443.21</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>HPVEE</td>
<td>446.1021484</td>
<td>9.91E+37</td>
<td>296.6373047</td>
<td>296.1890625</td>
<td>296.3755859</td>
<td>296.1988281</td>
</tr>
<tr>
<td></td>
<td>446.1050781</td>
<td>9.91E+37</td>
<td>296.6382813</td>
<td>296.2134766</td>
<td>296.3902344</td>
<td>296.1880859</td>
</tr>
<tr>
<td></td>
<td>446.1119141</td>
<td>9.91E+37</td>
<td>296.65</td>
<td>296.2037109</td>
<td>296.3902344</td>
<td>296.1861328</td>
</tr>
<tr>
<td>MATLAB</td>
<td>443.29</td>
<td>444.07</td>
<td>443.98</td>
<td>443.5</td>
<td>293.16</td>
<td>443.24</td>
</tr>
<tr>
<td></td>
<td>443.24</td>
<td>444.03</td>
<td>443.49</td>
<td>293.11</td>
<td>443.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>443.19</td>
<td>444.06</td>
<td>443.45</td>
<td>293.01</td>
<td>443.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>296.0513672</td>
<td>296.4283203</td>
<td>296.6421875</td>
<td>296.6832031</td>
<td>296.2583984</td>
</tr>
<tr>
<td></td>
<td>296.0503906</td>
<td>296.4224609</td>
<td>296.6333984</td>
<td>296.6744141</td>
<td>296.2476563</td>
</tr>
<tr>
<td></td>
<td>296.0367188</td>
<td>296.4224609</td>
<td>296.6285156</td>
<td>296.6675781</td>
<td>296.2632813</td>
</tr>
<tr>
<td>MATLAB</td>
<td>443.08</td>
<td>443.23</td>
<td>443.52</td>
<td>442.78</td>
<td>443.29</td>
</tr>
<tr>
<td></td>
<td>443.1</td>
<td>443.22</td>
<td>443.47</td>
<td>442.79</td>
<td>443.24</td>
</tr>
<tr>
<td></td>
<td>442.97</td>
<td>443.13</td>
<td>443.37</td>
<td>442.67</td>
<td>443.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>296.6578125</td>
<td>9.91E+37</td>
<td>296.4185547</td>
</tr>
<tr>
<td></td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>296.665625</td>
<td>9.91E+37</td>
<td>296.3277344</td>
</tr>
<tr>
<td></td>
<td>9.91E+37</td>
<td>9.91E+37</td>
<td>296.6451172</td>
<td>9.91E+37</td>
<td>296.509375</td>
</tr>
<tr>
<td>MATLAB</td>
<td>293.18</td>
<td>293.23</td>
<td>293.06</td>
<td>293.15</td>
<td>293.05</td>
</tr>
<tr>
<td></td>
<td>293.11</td>
<td>293.19</td>
<td>292.99</td>
<td>293.08</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>293.02</td>
<td>293.13</td>
<td>292.9</td>
<td>292.97</td>
<td>292.99</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.239993824</td>
<td>0.239984792</td>
<td>0.240001708</td>
<td>0.240103733</td>
<td>0.240420578</td>
<td>0.240617871</td>
</tr>
<tr>
<td>0.239901193</td>
<td>0.239899162</td>
<td>0.239916067</td>
<td>0.24001701</td>
<td>0.240308514</td>
<td>0.240523272</td>
</tr>
<tr>
<td>0.240073639</td>
<td>0.24010499</td>
<td>0.240100381</td>
<td>0.240197552</td>
<td>0.240547947</td>
<td>0.240764121</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23637</td>
<td>0.23677</td>
<td>0.23698</td>
<td>0.23726</td>
<td>0.23744</td>
<td>0.23733</td>
</tr>
<tr>
<td>0.23632</td>
<td>0.23672</td>
<td>0.23691</td>
<td>0.23714</td>
<td>0.23728</td>
<td>0.23722</td>
</tr>
<tr>
<td>0.23617</td>
<td>0.23668</td>
<td>0.23684</td>
<td>0.23709</td>
<td>0.23726</td>
<td>0.23718</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.240797293</td>
<td>0.240802895</td>
<td>0.240664407</td>
<td>0.240508787</td>
<td>0.240366456</td>
<td>0.240448646</td>
</tr>
<tr>
<td>0.240694433</td>
<td>0.240698374</td>
<td>0.240553321</td>
<td>0.240392153</td>
<td>0.240280139</td>
<td>0.24034329</td>
</tr>
<tr>
<td>0.240898837</td>
<td>0.240901298</td>
<td>0.240710399</td>
<td>0.240621905</td>
<td>0.240428502</td>
<td>0.240517668</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23715</td>
<td>0.23711</td>
<td>0.237</td>
<td>0.23692</td>
<td>0.2368</td>
<td>0.2373</td>
</tr>
<tr>
<td>0.23708</td>
<td>0.23704</td>
<td>0.23691</td>
<td>0.23682</td>
<td>0.23669</td>
<td>0.23717</td>
</tr>
<tr>
<td>0.23699</td>
<td>0.23695</td>
<td>0.23681</td>
<td>0.23669</td>
<td>0.23653</td>
<td>0.23707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.240562454</td>
<td>0.240656293</td>
<td>0.240698458</td>
<td>0.240738619</td>
<td>0.240784041</td>
<td>0.240801611</td>
</tr>
<tr>
<td>0.24047343</td>
<td>0.240521597</td>
<td>0.240606039</td>
<td>0.2406176</td>
<td>0.24071086</td>
<td>0.240658137</td>
</tr>
<tr>
<td>0.240637842</td>
<td>0.240719715</td>
<td>0.240801059</td>
<td>0.240766378</td>
<td>0.24085288</td>
<td>0.240871487</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23775</td>
<td>0.23619</td>
<td>0.2363</td>
<td>0.23663</td>
<td>0.23695</td>
<td>0.23709</td>
</tr>
<tr>
<td>0.23761</td>
<td>0.23619</td>
<td>0.2363</td>
<td>0.2366</td>
<td>0.23691</td>
<td>0.23704</td>
</tr>
<tr>
<td>0.23756</td>
<td>0.2361</td>
<td>0.23619</td>
<td>0.23649</td>
<td>0.23679</td>
<td>0.23692</td>
</tr>
<tr>
<td>Eff_30[K]</td>
<td>Vth3_11[m/s]</td>
<td>Vth3_12[m/s]</td>
<td>Vth3_13[m/s]</td>
<td>Vth3_14[m/s]</td>
<td>Vth3_15[m/s]</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HPVVE</td>
<td>0.240804163</td>
<td>419.6174765</td>
<td>419.648945</td>
<td>419.7001608</td>
<td>419.652707</td>
</tr>
<tr>
<td></td>
<td>0.240737363</td>
<td>419.7126065</td>
<td>419.7373786</td>
<td>419.7763595</td>
<td>419.7289074</td>
</tr>
<tr>
<td></td>
<td>0.240912416</td>
<td>419.5334733</td>
<td>419.5455254</td>
<td>419.5615636</td>
<td>419.516368</td>
</tr>
<tr>
<td>MATLAB</td>
<td>0.23711</td>
<td>426.32</td>
<td>425.94</td>
<td>425.22</td>
<td>424.85</td>
</tr>
<tr>
<td></td>
<td>0.23707</td>
<td>426.27</td>
<td>425.88</td>
<td>425.14</td>
<td>424.81</td>
</tr>
<tr>
<td></td>
<td>0.23694</td>
<td>426.36</td>
<td>425.87</td>
<td>424.97</td>
<td>424.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vth3_16[m/s]</th>
<th>Vth3_17[m/s]</th>
<th>Vth3_18[m/s]</th>
<th>Vth3_19[m/s]</th>
<th>Vth3_20[m/s]</th>
<th>Vth3_21[m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVVE</td>
<td>418.9064398</td>
<td>418.472255</td>
<td>418.0905609</td>
<td>418.1507162</td>
<td>418.3913373</td>
</tr>
<tr>
<td></td>
<td>418.9919901</td>
<td>418.563445</td>
<td>418.1958997</td>
<td>418.2589517</td>
<td>418.5111598</td>
</tr>
<tr>
<td></td>
<td>418.7927755</td>
<td>418.3484524</td>
<td>417.967924</td>
<td>418.0335172</td>
<td>418.2958899</td>
</tr>
<tr>
<td>MATLAB</td>
<td>424.03</td>
<td>424.23</td>
<td>424.59</td>
<td>424.63</td>
<td>424.83</td>
</tr>
<tr>
<td></td>
<td>424.14</td>
<td>424.25</td>
<td>424.53</td>
<td>424.58</td>
<td>424.8</td>
</tr>
<tr>
<td></td>
<td>423.92</td>
<td>424.07</td>
<td>424.44</td>
<td>424.49</td>
<td>424.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vth3_22[m/s]</th>
<th>Vth3_23[m/s]</th>
<th>Vth3_24[m/s]</th>
<th>Vth3_25[m/s]</th>
<th>Vth3_26[m/s]</th>
<th>Vth3_27[m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVVE</td>
<td>418.845469</td>
<td>418.7004712</td>
<td>418.5686551</td>
<td>418.3412552</td>
<td>418.2652163</td>
</tr>
<tr>
<td></td>
<td>418.9869783</td>
<td>418.8105708</td>
<td>418.6502003</td>
<td>418.5021489</td>
<td>418.4194628</td>
</tr>
<tr>
<td></td>
<td>418.7910816</td>
<td>418.6339955</td>
<td>418.4911899</td>
<td>418.2846728</td>
<td>418.2075323</td>
</tr>
<tr>
<td>MATLAB</td>
<td>425.18</td>
<td>424.29</td>
<td>423.47</td>
<td>426.27</td>
<td>426.07</td>
</tr>
<tr>
<td></td>
<td>425.22</td>
<td>424.34</td>
<td>423.54</td>
<td>426.11</td>
<td>425.91</td>
</tr>
<tr>
<td></td>
<td>425.23</td>
<td>424.26</td>
<td>423.37</td>
<td>426.02</td>
<td>425.85</td>
</tr>
<tr>
<td>Vth3_28[m/s]</td>
<td>Vth3_29[m/s]</td>
<td>Vth3_30[m/s]</td>
<td>Vz3_11[m/s]</td>
<td>Vz3_12[m/s]</td>
<td>Vz3_13[m/s]</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418.1191167</td>
<td>418.0873559</td>
<td>418.082197</td>
<td>3.125083658</td>
<td>3.125046055</td>
<td>3.12522517</td>
</tr>
<tr>
<td>418.2372554</td>
<td>418.197645</td>
<td>418.191211</td>
<td>3.125113806</td>
<td>3.124951521</td>
<td>3.125130137</td>
</tr>
<tr>
<td>418.0532197</td>
<td>418.0196735</td>
<td>418.0142246</td>
<td>3.125116174</td>
<td>3.124997959</td>
<td>3.125255998</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>424.89</td>
<td>424.64</td>
<td>424.6</td>
<td>3.1165</td>
<td>3.116</td>
<td>3.115</td>
</tr>
<tr>
<td>424.8</td>
<td>424.55</td>
<td>424.51</td>
<td>3.1164</td>
<td>3.1159</td>
<td>3.1149</td>
</tr>
<tr>
<td>424.77</td>
<td>424.54</td>
<td>424.5</td>
<td>3.1164</td>
<td>3.1157</td>
<td>3.1146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vz3_14[m/s]</th>
<th>Vz3_15[m/s]</th>
<th>Vz3_16[m/s]</th>
<th>Vz3_17[m/s]</th>
<th>Vz3_18[m/s]</th>
<th>Vz3_19[m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.125103673</td>
<td>3.124817351</td>
<td>3.124112379</td>
<td>3.123263847</td>
<td>3.122547532</td>
<td>3.122854845</td>
</tr>
<tr>
<td>3.125025428</td>
<td>3.124753972</td>
<td>3.124316471</td>
<td>3.123535967</td>
<td>3.122577107</td>
<td>3.122892786</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1142</td>
<td>3.1136</td>
<td>3.1133</td>
<td>3.1135</td>
<td>3.114</td>
<td>3.1141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vz3_20[m/s]</th>
<th>Vz3_21[m/s]</th>
<th>Vz3_22[m/s]</th>
<th>Vz3_23[m/s]</th>
<th>Vz3_24[m/s]</th>
<th>Vz3_25[m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.123153039</td>
<td>3.123186242</td>
<td>3.123501223</td>
<td>3.123310274</td>
<td>3.12336276</td>
<td>3.122861322</td>
</tr>
<tr>
<td>3.123238842</td>
<td>3.123299197</td>
<td>3.123861786</td>
<td>3.123436188</td>
<td>3.123470322</td>
<td>3.123085631</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1144</td>
<td>3.1146</td>
<td>3.1149</td>
<td>3.1137</td>
<td>3.1126</td>
<td>3.1159</td>
</tr>
<tr>
<td>Vz3_26[m/s]</td>
<td>Vz3_27[m/s]</td>
<td>Vz3_28[m/s]</td>
<td>Vz3_29[m/s]</td>
<td>Vz3_30[m/s]</td>
<td>m_dot_old</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.122753887</td>
<td>3.122662716</td>
<td>3.122572476</td>
<td>3.122527005</td>
<td>3.122517504</td>
<td>0.017299738</td>
</tr>
<tr>
<td>3.123210133</td>
<td>3.122893645</td>
<td>3.123014987</td>
<td>3.122535631</td>
<td>3.122967374</td>
<td>0.262398196</td>
</tr>
<tr>
<td>3.123133004</td>
<td>3.122597745</td>
<td>3.122732852</td>
<td>3.122688275</td>
<td>3.122900552</td>
<td>0.370995448</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1161</td>
<td>3.1155</td>
<td>3.1146</td>
<td>3.1143</td>
<td>3.1142</td>
<td>0.050678</td>
</tr>
<tr>
<td>3.1159</td>
<td>3.1153</td>
<td>3.1145</td>
<td>3.1142</td>
<td>3.1141</td>
<td>0.050682</td>
</tr>
<tr>
<td>3.1157</td>
<td>3.1151</td>
<td>3.1144</td>
<td>3.1141</td>
<td>3.114</td>
<td>0.050689</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power_Ref_old</th>
<th>Power_old</th>
<th>mdot_dm_Stage</th>
<th>mdot_dm_Rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57860.79276</td>
<td>57108.64355</td>
<td>9.706475542</td>
<td>0.097063138</td>
</tr>
<tr>
<td>40646.64629</td>
<td>40121.09353</td>
<td>9.706656119</td>
<td>0.097064943</td>
</tr>
<tr>
<td>40619.0722</td>
<td>40087.83007</td>
<td>9.706612679</td>
<td>0.097064509</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7692.3</td>
<td>7625.7</td>
<td>9.7349</td>
<td>0.097347</td>
</tr>
<tr>
<td>7694.2</td>
<td>7628.2</td>
<td>9.7352</td>
<td>0.09735</td>
</tr>
<tr>
<td>7696.1</td>
<td>7631.2</td>
<td>9.7359</td>
<td>0.097357</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California