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A PERSPECTIVE ON METHODS FOR TRAJECTORY OPTIMIZATION

I. Michael Ross ∗ and Fariba Fahroo †

Naval Postgraduate School, Monterey, CA 93943

In recent years there has been an upsurge of purported new methods for trajectory
generation and optimization each promising many advantages over another. Frequently,
one has to deal with new, and sometimes confusing, terminologies such as inverse methods,
differential inclusions, differential flatness, collocation, pseudospectral methods, higher-
order methods and so on. In this paper we provide a mathematical framework that
distinguishes or blends the various approaches. This framework is facilitated by distin-
guishing a transformation from the discretization rather than bundling them together.
Two clear layers emerge with two types of convergence notions. A Covector Mapping
Principle is enunciated which facilitates the definition of a Complete Method. Many
competing claims and issues can now be resolved. A surprising conclusion that can be
drawn from this is that only a few fundamental methods for trajectory generation and
optimization of complex dynamical systems have been studied in the literature. Hence
many basic research questions remain unanswered.

1 Introduction

Betts1,2 provides an excellent review and survey of
the many numerical methods for trajectory optimiza-
tion. The purpose of this paper is not to provide a
survey, but to provide a perspective on the various
methods for trajectory optimization. A vast array of
sometimes confusing terminologies abound in the lit-
erature: inverse methods, dynamic inversion, differen-
tial inclusions, differential flatness and so on. While
it may be clear that these are valuable concepts, an
important question is: do these concepts translate to
new numerical methods? Can a framework be put
forth that either distinguishes a method or unifies it
with some other? The purpose of this exercise is not
to promote or disparage a method but to identify how
it fits within a mathematical framework. Apparently,
Betts2 foresaw this as he writes, “... one may expect
many of the best features of seemingly disparate tech-
niques to merge, forming still more powerful methods.”

In order to facilitate the discussion of various meth-
ods, we articulate the following basic problem:

Problem B

Let x ∈ RNx and u ∈ RNu . Determine the state-
control function-pair, {x(·),u(·)} that minimize the
fixed-time Lagrange cost functional,

J [x(·),u(·)] =
∫ τf

τ0

F (x(τ),u(τ), τ)dτ (1)

subject to the dynamic constraints,

ẋ(τ) = f(x(τ),u(τ), τ) (2)

∗Associate Professor, Department of Aeronautics and Astro-
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†Associate Professor, Department of Mathematics. Senior
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and end-point constraints,

x(τ0) = x0 (3)
e
(
x(τf )

)
= 0 (4)

where it is assumed that the functions,

F : RNx × RNu × R→ R (5)
f : RNx × RNu × R→ RNx (6)
e : RNx → RNe (7)

are continuously differentiable with respect to their ar-
guments. The simplicity of the problem formulation
posed above begs an important question: If a method
is capable of solving this problem, can it be generalized
to solving vastly more complex problems that may be
abstracted as,

Problem G
Determine the state-control function-pair,

{x(·),u(·)}, design parameters p, and the clock
times τ0 and τf that minimize the Bolza cost
functional,

J [x(·),u(·), τ0, τf ;p] = E(x(τ0),x(τf ), τ0, τf ;p)

+
∫ τf

τ0

F (x(τ),u(τ), τ ;p)dτ (8)

subject to the constraints,

ẋ ∈ F(x,u, τ ;p) (9)
x ∈ X , u ∈ U , p ∈ P, X × U × P ∈ H (10)

where all functions are piecewise differentiable, the de-
noted sets may be given explicitly by equalities and
inequalities and the number of discontinuities in the
state and control variables are finite. Although this
general problem is stated abstractly, it is arguably
the most important problem from a practical per-
spective of solving “highly complex problems” arising
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in aeronautics, astronautics, robotics and many other
disciplines where “nonsmoothness” and nonlinearities
abound. See Bryson3 for a wide range of solved prob-
lems.

Our discussion will be focused on the capability of
methods that can solve the range of problems implied
by the simplicity in the formulation of B to the com-
plexity of G.

2 Transformations
We begin with Problem B as it is the most famil-

iar. The necessary conditions are given by the famous
Minimum Principle due to Pontryagin and others.4 In
terms of the control Hamiltonian defined as

H(λ,x,u, τ) = F + λT f (11)

the necessary optimality conditions are,

∂H

∂u
= 0, (12)

where λ(t) is the Lagrange multiplier governed by the
adjoint equation (costate dynamics) and the transver-
sality conditions

λ̇ = −∂H

∂x
(13)

λ(τf ) =
(

∂e
∂x(τf )

)T

νf (14)

These necessary conditions do not solve the prob-
lem (at least from a numerical perspective); rather
they transform it to another problem in a higher
dimensional space, viz., the primal-dual space. This
transformation (known as the Legendre-Fenchel trans-
formation5) is achieved by way of the Hamiltonian and
is said to dualize the problem. This transformed prob-
lem is the two-point boundary-value-problem (BVP):

Problem Bλ

Determine the state-control-costate function-triple,
{x(·),u(·),λ(·)} and a multiplier νf that satisfy the
differential-algebraic equations (DAE),

ẋ =
∂H

∂λ
(15)

λ̇ = −∂H

∂x
(16)

∂H

∂u
= 0 (17)

and the boundary conditions

x(τ0) = x0 (18)
e
(
x(τf )

)
= 0 (19)

λ(τf ) =
(

∂e
∂x(τf )

)T

νf (20)

This is widely recognized as a difficult problem.6

Thus, although the Minimum Principle is a very use-
ful theory and an extremely important tool in analysis,
it is not a numerical method and does not “solve” the
problem. Except in rare cases no analytic solutions
can be obtained for the BVP. Even linear BVPs do
not have analytic solutions. Thus, solving even simple
trajectory optimization problems involves numerical
methods. Note that the transformation of Problem
B to Problem Bλ is not a numerical method. By
definition, numerical methods involve discretiza-
tion. Hence, the type of discretization may be used
to classify numerical methods for trajectory optimiza-
tion. Deferring a discussion on the various types of
discretizations, we note that under certain conditions
other transformations on Problem B may be possible.

Assume that u may be eliminated analytically from
Eq.(2) so that we can write,

u(τ) = g(ẋ(τ),x(τ), τ) (21)

Note that this is possible in extremely rare cases. If
f(·) satisfies the conditions for the Inverse Mapping
Theorem, then g(·) exists, but it may not be possible
to find it analytically. Whether or not an analytic
expression for g can be obtained, this transforma-
tion is the well-known hodograph transformation
frequently used in engineering analysis.7 Then, substi-
tuting Eq.(21) back in Eq.(2), the dynamic constraints
transform as

ẋ(τ) = f(x(τ),g(ẋ(τ),x(τ), τ), τ) (22)

If this does not result in a trivial equation (ẋ = ẋ)
then Eq.(22) may be written in the implicit form,

fcov(x(τ), ẋ(τ), τ) = 0 (23)

If Eq.(22) reduces to a trivial expression, then the
system is said to be differentially flat and is further
discussed later in this section. In the same fashion,
the running cost, F transforms to Fcov and Problem
B may be transformed to a classical calculus of vari-
ations problem4,8 by substituting for the controls in
Eqs.(1) and (2). Thus, we get

Problem BCOV

Determine the state function, x(·) that minimizes
the fixed-time Lagrange cost functional,

J [x(·)] =
∫ τf

τ0

Fcov(x(τ), ẋ(τ), τ)dτ (24)

subject to the side constraints,

fcov(x(τ), ẋ(τ), τ) = 0 (25)

and the same end-point constraints as before. Note
that unlike the transformation of Problem B to Bλ,
this transformation (i.e. from B to BCOV ) is still
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in the primal space; consequently, it has a primal-
dual formulation given by the classical Euler-Lagrange
equations. We denote this problem by Problem Bλ

COV

which is also a BVP.
Now suppose that Problem B is expanded to include

simple control constraints, u ∈ U = {u : ul ≤ u ≤
uu}. Let us denote this as Problem B + U . In other
words Problem B + U = Problem B + simple control
constraints. Assume again that Problem B + U con-
tinues to have the rare feature of allowing an analytic
hodograph transformation given by Eq.(21); then, the
control constraints, u ∈ U , results in

ul ≤ g(ẋ(τ),x(τ), τ) ≤ uu (26)

and the dynamic constraints in Problem BCOV gener-
alize to,

fl ≤ fcov(ẋ(τ),x(τ), τ) ≤ fu (27)

Since Eq.(27) is, strictly speaking, not an equation but
a relation, it is representative of the more general rela-
tion (see Eq.(9)) known as a differential inclusion.
Hence, when Problem B includes a control constraint,
the calculus-of-variations problem is modified by Prob-
lem BDI ,

Problem BDI

Determine the state function, x(·) that minimizes
the fixed-time Lagrange cost functional,

J [x(·)] =
∫ τf

τ0

Fcov(x(τ), ẋ(τ), τ)dτ (28)

subject to the side constraints,

fl ≤ fcov(ẋ(τ),x(τ), τ) ≤ fu (29)

and the same end-point constraints as before. Thus,
this “differential inclusion problem” is really Problem
BCOV modified by replacing Eq.(25) with Eq.(27). As
with Problem BCOV , this is a transformation in the
primal space; hence it has a dual counterpart given
by the adjoint inclusion.5 This is a generalized
BVP and is denoted by Problem Bλ

DI . A controlled
differential inclusion – a further generalization of
a differential inclusion – is given in Eq.(9). Thus,
differential inclusions is no more a method for solv-
ing trajectory optimization problems as Problem G
is: it is clearly a statement of a problem; it is not
a method – numerical or analytical. Unfortunately,
it has been erroneously described as a (numerical)
method by some practitioners thus creating vast mis-
use of good terminology. Sometimes, it is also referred
to as an inverse method3,9 since the controls are
computed “inversely” from Eq.(21). The process may
be generalized by including a coordinate transforma-
tion y = c(x) in which case y is referred to as an
output and the system so obtained is called an inverse
system. This procedure is also referred to as inverse
dynamics or dynamic inversion.9

While the concept of differential inclusions has been
around since the 1960s,10 the concept of differential
flatness is relatively new and has gained some expo-
sure in the last few years. According to Fliess et al.,11

an autonomous dynamical system, (i.e. Eq.(2) with
time removed) is said to be differentially flat if there
exists an output,

y = c(x,u, u̇, . . . ,u(α)), y ∈ RNu (30)

such that the state and controls can be written as

x = a(y, ẏ, . . . ,y(β)) (31)
u = b(y, ẏ, . . . ,y(β+1)) (32)

The output, y is called a flat output. Thus, intu-
itively, a dynamical system is differentially flat if it is
equivalent to a system without dynamics, i.e. a static
system. That is, in output space, there are no differ-
ential constraints. However, the boundary conditions
transform nonlinearly in a possibly complex form ac-
cording to,

x(τ0) = a(y(τ0), ẏ(τ0), . . . ,y(τ0)(β)) = x0 (33)

e
(
x(τf )

)
= e

(
a(y(τf ), ẏ(τf ), . . . ,y(τf )(β))

)
= 0 (34)

Similarly, the running cost, F also transforms in a pos-
sibly complex manner. Thus Problem B transforms to
a rather standard problem of the calculus-of-variations
with some nonlinear boundary conditions. Hence we
have the following problem,

Problem BDF

Determine the flat output, y(·), that minimizes the
fixed-time Lagrange cost functional,

J [y(·)] =
∫ τf

τ0

Fdf (y(τ), ẏ(τ), . . . ,y(β+1))dτ (35)

subject to the end point constraints,

a(y(τ0), ẏ(τ0), . . . ,y(τ0)(β)) = x0 (36)

e
(
a(y(τf ), ẏ(τf ), . . . ,y(τf )(β))

)
= 0 (37)

where Fdf is the transformed cost function. Compar-
ing this problem to Problem BCOV , it is clear that if
Eq.(22) were to reduce to an identity, then y = x is
the flat output. Similar to Problem BCOV , this also
has a dual counterpart, Problem, Bλ

DF . The apparent
advantage of a differentially flat system is that every
trajectory in the output space is feasible; therefore,
trajectory generation is theoretically simpler in terms
of the flat outputs. But, the disadvantages are that it
is still difficult to determine whether a given system
is differentially flat; consequently, only a limited num-
ber of systems can be characterized as differentially
flat. Even when systems are flat, solving the problem
in output space may generate substantial numerical
difficulties since the transformed boundary conditions
and the cost function may have undesirable numerical
properties.
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Further Issues

It is evident that we can distinguish two clear types
of transformations: ones that occur in the primal space
and another that “lifts” each problem to the primal-
dual space. The dualized problems are natural in the
sense that to each problem in the primal space, there
is a corresponding primal-dual problem facilitated by
the Legendre-Fenchel transform. The transformations
that occur in the primal space require additional as-
sumptions on the system (e.g. differential flatness).
In other cases the transformations may involve a loss
of information. As noted by Sussmann,12 “... the
passage from the control system to the differential in-
clusion often involves a loss of information.” If one
considers Problem B to be limiting (from a point of
view of solving complex problems), then the primal
transformations of this problem are further limited.
None of the primal transformations posed above can
be generalized to Problem G. Hence one may regard
these transformations in the primal space being appli-
cable to a limited class of problems.

3 Discretizations

As noted earlier, except in very rare cases, none of
the problems posed above (either the original problem
or the dualized versions) can be solved analytically.
By its very nature, a numerical method automati-
cally implies a discrete approximation. The continuous
problems of the previous section can be discretely ap-
proximated using a variety of methods such as Euler
or Runge-Kutta methods. Many engineers tacitly as-
sume a fourth or fifth-order Runge-Kutta method to
be the “truth” and often forget that it is still an ap-
proximation method. A discretization method is
said to be direct or indirect when it refers to the dis-
cretization of Problem B(·) or Bλ

(·) respectively. The
type of discretization then qualifies the method. Thus,
for example, the terms direct Runge-Kutta and in-
direct Runge-Kutta are used to denote Runge-Kutta
discretization methods for Problem B(·) and Bλ

(·) re-
spectively. Just as the transformation method dis-
cussed in the previous section does not “solve” the
problem, a discretization method does not solve the
problem. Instead it converts infinite dimensional prob-
lems to finite dimensional ones.

When Problem B(·) is discretized, the infinite di-
mensional problem (of finding optimal functions in
function space) reduces to the finite dimensional prob-
lem of parameter optimization. Thus a discrete ver-
sion of a continuous nonlinear trajectory optimization
Problem B(·) is a structured nonlinear programming
problem (NLP)

Problem BN
(·)

minimize J(qN
(·)) (38)

subject to qN
(·) ∈ QN(·) (39)

where N denotes the finiteness of the number of pa-
rameters (such as a collection of mesh points), qN

(·) rep-
resents the finite collection of parameters that approx-
imate the appropriate functions described in Problem
B(·), and the set QN(·) denotes the totality of all the
constraints. It is apparent that the structure of QN(·)
corresponds in some way to the structure of the con-
straints specified by Problem BN

(·). Methods that ex-
ploit this structure are at the focus of some of the
current research topics.13,14

A direct method is said to converge if the solution to
Problem BN

(·) approaches the solution to Problem B(·)
in some norm as N → ∞. This is stated compactly
as,

lim
N→∞

BN
(·) → B(·) (40)

This is referred to as the convergence of the dis-
cretization and is not to be confused with the con-
vergence of the NLP algorithm. Convergence of algo-
rithms is discussed in the next section.

In the same spirit, it is apparent that when Problem
Bλ

(·) is discretized, the infinite dimensional problem
reduces to a finite-dimensional algebraic problem of
solving generalized nonlinear equations. A gen-
eralized nonlinear equation is stated as 0 ∈ f(x) and
is a generalization of the familiar nonlinear equation,
f(x) = 0. Thus a discrete version of a BVP Prob-
lem Bλ

(·) is a root-finding problem (RFP) of solving
nonlinear equations if all constraints can be stipulated
as equalities. Since Problem Bλ

(·) involves inequalities
(for example, Problem Bλ

DI), the discrete BVP is an
RFP involving generalized equations,

Problem BλN
(·)

find qλN
(·) (41)

such that qλN
(·) ∈ QλN

(·) (42)

where the symbols have similar meanings as in the
direct discretization. Comparing Problem BλN

(·) and
BN

(·), it is apparent that the root-finding problem may
be interpreted as finding a feasible solution for a non-
linear programming problem. Thus it is no surprise
that modern methods for solving nonlinear equations
are based on nonlinear programming. In fact, gener-
alized equations are now routinely solved using NLP
codes. Finally, as with the direct discretization, an
indirect method is said to converge if,

lim
N→∞

BλN
(·) → Bλ

(·) (43)
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A natural question that arises in the discretization
process is the nature of the connection between Prob-
lem BN

(·) and BλN
(·) . Since the continuous problems are

related (via the Legendre-Fenchel transform), an im-
portant question to ask is if the discrete problems are
related. This question has both numerical and theo-
retical consequences as shown presently.

Using our now familiar notation, we can dualize
Problem BN

(·) to Problem BNλ
(·) . This dualization is

achieved by way of the Lagrange multiplier rule and
the Karush-Kuhn-Tucker conditions.15 It is extremely
tempting to equate Problem BNλ

(·) to Problem BλN
(·) .

In general, this is not true! That is discretization and
dualization do not commute. It is also very tempting
to presume that dualizing the discrete problem pre-
serves the order of the apparent discretization of the
dual variable. In general, this is also not true!16 How-
ever, there is a body of numerical methods where the
discretization and dualization commute with respect
to an appropriate transformation. This is articulated
to as the Covector Mapping Principle:

The Covector Mapping Principle

Given a general optimal control Problem G, and a
discrete approximation to G denoted by Problem GN ,
there exists an order-preserving map between the dual
variables corresponding to the dualized Problem GNλ

and the discretized Problem GλN .

As noted above, not all methods satisfy this prin-
ciple which creates a “gap” as illustrated in Figure 1.
Methods that satisfy this principle close this gap and
are called Complete Methods. The presently known
set of complete methods are Hager’s family of Runge-
Kutta methods16 and the Legendre pseudospectral
method.17 While Hager’s Runge-Kutta methods pro-
vide a nontrivial adjoint transformation for the dual
variables, the Legendre pseudospectral method pro-
vides a simpler transformation in the sense that it is
linear and symmetric. The popular Hermite-Simpson
method is not a complete method.18 Many types of
Runge-Kutta methods are not complete either. The
notion of a complete method blurs the distinction be-
tween a direct and indirect method and facilitates
convergence theorems.16,19

A direct method can be thought of as discretizing
first and then dualizing whereas an indirect method
is the process of dualizing first and discretizing after-
wards. The former is a preferred method for solving
complex problems since it involves substantially less la-
bor. The latter is a preferred method from the point of
view of accuracy. By virtue of the Covector Mapping
Principle, a complete method allows the commutation
of discretization and dualization thereby obviating the
notion of a direct or indirect method.
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Fig. 1 Schematic of Dualization, Discretization
and the Covector Mapping Principle

Open Problems

Covector Mapping Theorems (i.e. special versions of
the Covector Mapping Principle) have been proven for
a very narrow class of methods. It is further limited
to a narrow class of problems (i.e. smooth problems
or problems with free end points). Many questions
remain unanswered; for example: do the theorems
generalize to a larger class of problems, particularly
nonsmooth problems where most applications can be
categorized? While specific methods can be shown
to be complete or otherwise, can necessary conditions
be obtained to test whether a method is complete?
Given a complete method, how can its corresponding
covector mapping theorem be exploited to generate
efficient algorithms? Does a complete method auto-
matically imply a convergent method? These are some
of the vast number of open questions that are at the
heart of theoretical and numerical aspects of solving
complex nonlinear optimal control problems. Since
answers to these questions facilitate local solutions to
the Hamilton-Jacobi equations, it is apparent that op-
timal feedback control for complex nonlinear systems
is possible via this approach.

4 Algorithms

The final step in solving a trajectory optimization
problem is an algorithm for solving the discrete prob-
lems posed in the previous section. Since Problem BN

(·)
is a subset of Problem BλN

(·) we will discuss algorithms
for solving the structured NLP Problem BN

(·).

An algorithm15 A is a point-to-set map, A : A ⇒ A,
such that to each point a0 ∈ A, it assigns a sequence,
{a1,a2, . . .} ∈ A by way of a point-to-point map, I :
A→ A called an iteration that generates ak+1 for any
given ak, k = 0, 1, . . .. A fixed point of I is a point
that satisfies I(a) = a. An algorithm is said to be
convergent from a point a0 if a ∈ A(a0) where a is a
fixed point of I. Alternatively, an algorithm is said to
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be convergent from the point a0 if,

lim
k→∞

ak = a (= I(a)) (44)

From this brief discussion it is clear that we have two
notions of convergence with regards to solving trajec-
tory optimization problems: one corresponding to the
discretization as described in the previous section and
another corresponding to the algorithm defined above.
These notions are independent. Thus it is possible to
obtain a wrong solution to the trajectory optimiza-
tion problem by successfully solving Problem BN

(·) (i.e.
obtaining an algorithmically convergent solution) by
choosing a non-convergent discretization scheme. On
the other hand choosing a convergent discretization
scheme but a non-convergent algorithm is not as disas-
trous in the sense that it is a self-correcting mechanism
– the lack of a solution!

If the algorithm, A, converges from every point
a0 ∈ A, then it is said to be globally convergent.15

Note that global convergence of the algorithm does
not mean it converges to a globally minimum solution.
A damped Newton method is globally convergent (un-
der mild conditions) but does not necessarily find a
globally minimum solution.

The vector, dk = ak − ak−1 is the direction of the
iteration, I at iterate, k. Various scalar-valued func-
tions, V : RNa → R are used to define measures of
performance of the algorithm such as rate or order of
convergence, rate of descent with respect to some de-
scent function and so on. For example the order of
convergence of an algorithm at a fixed point a is de-
fined in terms of some norm function Vk(a) = ‖ak−a‖.
If Vk = c|ak − a|p where |·| is the Euclidean norm, c
is some constant and limk→∞ Vk = 0 then p is called
the order of convergence. Thus, if p = 2, the rate of
convergence is said to be quadratic.

This once again illustrates that the convergence of
the algorithm has nothing to do with the convergence
of the discretization. The former refers to iterative
maps while the latter is with reference to accuracy.

5 Conclusions
An optimal control problem can be transformed to

another optimal control problem by way of various
transformations. A vast number of methods can sim-
ply be categorized as transformations of the problem
than as new numerical methods. In fact, such transfor-
mations are really a transformation of the coordinates
of the dynamical system. When dynamical systems ex-
hibit certain special properties, such transformations
may be useful in solving the original problem in the
transformed space.

On the other hand, every optimal control problem
can be transformed to another problem (not another
optimal control problem) by way of the Legendre-
Fenchel transform. Hence, an optimal control problem

is a primal problem which can be transformed to a
primal-dual problem. This transformation is the du-
alization of the problem and is achieved by way of
the Hamiltonian of the problem. Methods that dis-
cretize the primal problem are called direct methods
while those methods that discretize the transformed
(i.e. primal-dual) problem are called indirect. Hence,
when a direct method is used to discretize a (primal)
problem it indirectly and automatically discretizes its
transformed problem, i.e. the primal-dual problem.
An important question on the discretization process
is whether or not the apparent discretization of the
primal-dual problem is of the same order as that of
the primal problem. Not all methods preserve the or-
der of the discretization.

The discrete primal problem can also be dualized by
the Lagrangian of the problem. One question posed
in this paper is whether or not the process of dis-
cretizations and dualizations commute. This question
is linked to the Covector Mapping Principle. This
principle states that discretization and dualization can
commute with respect to a map. Such a map exists for
Hager’s family of Runge-Kutta methods and the Leg-
endre pseudospectral method. It can be shown that
such mappings do not exist for certain methods that
include a class of Runge-Kutta method and the popu-
lar Hermite-Simpson method. Methods for which such
maps exist are called complete methods, and by defi-
nition, satisfy the covector mapping principle. Proofs
of existence of such maps (i.e mapping theorems) are
at the heart of new methods of discretization.

The motivation for such new methods for discretiza-
tion is several-fold. It has been argued that direct
methods are not as accurate as indirect methods. Our
perspective reveals that this may be attributed to
those direct methods that are not complete methods.
Thus choosing a complete method provides higher ac-
curacy. Direct methods are preferred over indirect
methods, particularly for complex problems, since no
labor is required in dualizing the problem; that is, in
developing the labor-intensive necessary conditions for
optimality. While the labor intensity may be alleviated
by symbolic packages, industry-strength problems do
not facilitate such luxuries due to various complexi-
ties like table-look data that cannot be analytically
differentiated. Thus, choosing a complete method pro-
vides the advantage of accuracy without the burden
of labor. In addition, since a complete method sat-
isfies the covector mapping principle, the associated
mapping theorem may be used to determine the all-
too-important dual variables. These variables may be
use to perform self-checks on the optimality of the re-
sult, glean insight on parameter sensitivities, clues on
alternative optimas and other quick insights on the
nature and structure of the problem. Thus complete
methods by virtue of the covector mapping principle
essentially blur the distinction between the so-called
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direct and indirect methods.
A discretization method is not an algorithm. The

performance of many algorithms are based on cer-
tain assumptions on the properties of the constraint
sets and the functions which are being minimized.
Hence, a method must be matched to an appropri-
ate algorithm. Once this matching is accomplished,
the algorithm may be tuned to the method by ex-
ploiting its properties. A complete method has a
distinct property provided by the mapping principle.
It is apparent that exploiting this map facilitates a
blending of the discretization method to the algorithm.
A numerical trajectory optimization method is there-
fore the totality of the discretization method and the
algorithmic method. Too often a method is char-
acterized solely by the discretization method or the
algorithmic method. Either characterization is incom-
plete. Thus, for example, one may use a Sequentially
Quadratic Programming (SQP) algorithmic method
or say an Interior Point algorithmic method in con-
junction with a “direct” Runge-Kutta discretization
(collocation) method. Conversely one may use an SQP
algorithm to solve the problem by way of shooting
or collocation. Naming methods such that they re-
veal the discretization and the algorithm may generate
unusually long names; for example, “Direct Runge-
Kutta Collocation Sequential Quadratic Programming
Method.” Since a discretization method comes prior
to the algorithmic method, it seems more appropriate
to name a method based on the discretization than the
algorithm. This view facilitates the notion of the algo-
rithm being the engine of the discretization method,
while the discretization method (along with comple-
mentary problems like mesh-refinements) take on the
role of the body of the method.
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