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ABSTRACT 

This is the final report for the project entitled “Optimally Locating BETSS-C 
Surveillance Assets” sponsored by the Joint Improvised Explosive Device Defeat 
Organization.  The research has focused on developing optimization models for optimal 
placement of cameras and tower-mounted surveillance systems such as BETSS-C (Base 
Expeditionary Targeting and Surveillance Systems-Combined).  These systems have 
proven themselves useful in detecting improvised explosive devices as they are being 
emplaced, and in making certain locations less desirable for emplacement.  We have 
created models and solution software that locate a given set of camera towers (also 
observation towers or aerostats) to optimally cover “points of interest” on the ground.  
Computational results show that it is possible to obtain near-optimal solutions for 
problems with up to 30 cameras and 100 points of interest on a laptop computer in less 
than one minute. 
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A. BACKGROUND 

In Iraq and Afghanistan, Coalition Forces have found that camera towers such as 
“GBOSS” (Ground-Based Operational Surveillance System), BETSS-C (Base 
Expeditionary Targeting and Surveillance Systems-Combined), and JLENS/RAID PS2 
systems, can help thwart the emplacement of improvised explosive devices (IEDs).  
These systems can also identify disturbances to which troops need to respond, follow 
suspicious vehicles, and so on.  Their use, for similar purposes in the increasingly 
complex war in Afghanistan, is critical to the security of U.S. and allied forces, as well as 
to the civilian population.  No tool currently exists, however, for assigning a limited 
number of camera towers to a large number of potential (secure) sites so as to  
(1) maximize the “value” of the surveilled “points of interest” (POIs), (2) maximize the 
probability of detecting specific threats, or (3) maximize the overall “coverage” of 
important sites that are surveilled.  Developing such a tool is the purpose of this study. 

The research focuses on developing, implementing, and solving a series of 
prototypic mathematical models for optimizing camera-tower placement.  We have 
created nonlinear integer optimization models for this purpose, have reformulated those 
models for tractability, and are solving them using general-purpose optimization tools. 

B. MATHEMATICAL MODELS 

1. Basic Camera Location Models 

We first develop the following nonlinear, camera location (NL-CL1)  
optimization model: 
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l(NL-CL1):
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subject to: 
l

ly m , 

       {0,1}ly l L   ,  

where l  is a given set of potential camera locations; iL I  is a set of POIs that need to 
be kept under surveillance; m  is the number of camera towers available; is the “value” 

of POI i, which represents the damage or consequences that events (such as an IED 
emplacement) at that point would cause; is the probability of not detecting an event at 

POI i from location l, if a camera is placed at that location; and the decision variable 

iv

ilq

ly  is 

1 if we locate a tower at l, and 0ly   otherwise.  Since ly
il

l L

q

  is the probability that an 

event at POI i is not detected by any of the installed cameras, NL-CL1’s objective, under 
an assumption of independence, minimizes overall expected “value” of undetected events 
across POIs, subject to the limit on available cameras.  Henceforth, we use “expected 
‘value’ of undetected events” and “expected damage” interchangeably.  In particular, we 
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We note that (NL-CL1) does assume independence of detections between events 

at a given POI, and requires some user inputs that may not be immediately available, 
namely and .  It may be necessary to use subjective estimates if these data are 

unavailable.  We believe that the model’s solution is likely to provide useful insight even 
when using subjective input, however. 
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We also note that the notation in the model hides some of the practical aspects of 

an implementation.  Suppose, for instance, that there is no line of sight between potential 
camera location  and POI .  In this case, i 1iq  , and the model is correct.  However, 

our implementation would not even create the corresponding term in the objective 
function. 

A second model, NL-CL2, seeks to minimize the maximum expected damage at 
any POI, i.e., the worst-case damage among all POIs.  This second model is: 

(NL-CL2)  z
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where the new set of constraints ensures that z (the objective value sought) takes the 
maximum, among all POIs, of the expected damages at each individual POI.  It is 
important to note that in this model we may minimize Z = log z without affecting the 
outcome.  Also, since 
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NL-CL2 can be restated as this mixed-integer program: 
(MI-CL2) Z  

y
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Unfortunately, the same type of simplification is not possible for NL-CL1:  The 
logarithm function cannot be used to decompose that model’s objective function 

into a linear expression of the y-variables.  Although we may expect a strong ly
l
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correlation between the optimization of   and that of  

in many practical instances, no guarantee of equivalence exists, and bounding the error in 
the approximation appears to be a difficult task. 
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2. Converting the Basic Model into a Network-Flow-Based Model 

This section shows how to convert NL-CL1 into a mixed-integer linear program 
that has an underlying network-flow structure. 

We use the concept of a generalized flow (see Ahuja et al., 1993, pp. 566-572).  
Specifically, for each POI i, we create a network whose nodes correspond to locations 

 that could detect an event should we install a camera at those locations, that is, 

.  For notational simplicity, assume  is ordered and denote its first 

element as , its last element as , and the predecessor to a given l

i

{ |iL l  il

F
il il   ( ) as F
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ill . 

In our network model for POI i, each node il L  is connected to the next location 

node by two arcs:  The flow on the first arc (denoted ilx ) represents the probability that 

cameras up to that node have not detected the event, given that no camera is installed at 
the location.  The flow on the second arc (denoted S

ilx ) represents the same concept, but 

applies when a camera is installed at the node.  That is, when , part of the flow 

going into node l (probability of non-detection up to that point) will be lost in the 
transition (flow) to the next location.  The overall probability of non-detection, 

, is the flow into a fictitious node connected to the last node . 
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The mixed-integer network model, MIN-CL1, which is equivalent to NL-CL1, 
may be stated as follows: 

(MIN-CL1)
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MIN-CL1 above (like the original NL-CL1) allows each location with a camera to 
surveil all POIs  with a constant probability of detection.  This assumption 

is, in most cases, optimistic, because a camera needs time to rotate, zoom in and out, and 
focus on each of the POIs, and personnel are needed to monitor the camera images from 
each POI.  This research does not address the problem of incorporating a decrease in 
detection probability for a camera surveilling multiple POIs, or the inherent details about 
frequency of rotation between surveilled POIs, etc.  The work of our colleagues Burton et 
al. (2008) may apply here to future extensions, however.  That work determines the 
proportion of time that a single camera should dedicate to surveilling POI i, assuming 
events of interest occur according to a Poisson process with a location-dependent rate 
(and are independent of events at other POIs), and that detection times at each location 
are exponentially distributed. 

il

To make our approach more realistic, we incorporate a parameter, k, denoting the 
maximum number of sites that any one camera may surveil simultaneously.  In this case, 
additional variables ily  must control whether or not a camera installed at location l will 

be dedicated to surveil POI i.  This can be accommodated in the existing models  
as follows: 

Add the following constraint to both MIN-CL1 and MI-CL2: 

    S
il l

i

y k y l  . 

 Replace the following constraints in MIN-CL1: 
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with these new constraints: 
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 Replace the following constraints in MI-CL2: 
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C. COMPUTATIONAL IMPLEMENTATION 

1. Optimization Models 

We have implemented the NL-CL1 in GAMS (GAMS, 2010), and have solved a 
number of randomly generated instances using GAMS/CONOPT (GAMS/CONOPT, 
2010) for benchmarking purposes. 

For the mixed-integer models, MIN-CL1 and MI-CL2, we have used the  
Xpress-MP (FICO, 2010) development environment, and have solved them with the 
Xpress-MP and/or CPLEX (IBM, 2010) optimization engines.  The remainder of the 
document refers to this implementation. 

2. Database 

The supporting database for our tool is implemented in Microsoft Access 2007 
(Microsoft, 2010).  Each database file contains one modeling example, representing a 
physical layout of POIs and locations.  For that example, the file may include several 
scenario settings which differ, for example, in the number of available cameras, or in the 
type of model we would like to run.  The structure of this database is as follows  
(Figure 1): 

Tables: 

LOC:  Locations 

POI:  Points of interest 

LOC_POI:  Attributes for locations and points of interest 

SCENARIO:  Different scenarios to run, and associated solutions to store, for the 
incumbent “example” (see Section D) of locations and POIs 

Queries: 

Delete_LOC:  Eliminates all records from LOC table 

Delete_POI:  Eliminates all records from POI table 

LOC_POI_CreateMatrix:  Creates the list of all possible combinations of 
locations and POIs to ease the input of associated probabilities 



 

 

Figure 1.  Database tables and queries 

 

Figure 2.  Fields for the database tables, and relationships among tables 

Fields in each of the above tables and relationships are shown in Figure 2.  The 
tables below describe these fields in more detail: 
 
Table: LOC  

Name Type Default Description 
Node Text  Location code 
XCoor Double 0.0 X coordinate 
YCoor Double 0.0 Y coordinate 
FixedSelection Yes/No No If “Yes” and ObeyFixed=”Yes” in table SCENARIO, the location must be selected 
Selected Yes/No No Whether or not the location was selected by the optimization for emplacement of a 

camera (OUTPUT) 
 
Table: POI 
Name Type Default Description 
Node Text  POI code 
XCoor Double 0.0 X coordinate 
YCoor Double 0.0 Y coordinate 
val Double 1.0 Value of the POI 
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Table: LOC_POI 

Name Type Default Description 
LOCnode Text  Location code 
POInode Text  POI code 
prob Double 0.0 Probability of detection of an event at the POI from the location 
Selected Yes/No No Whether or not the POI was selected by the optimization to be surveilled from the 

location (OUTPUT) 
 
Table: SCENARIO 

Name Type Default Description 
index Long Integer  Scenario index (AUTOMATED) 
Run Yes/No Yes If “Yes,” the scenario will be run next time the optimizer is executed 
MinMax Yes/No No If “Yes,” the optimizer solves a min-max (MI-CL2) problem.  If no, it 

solves the min overall average value (MIN-CL1) problem. 
nCameras Long Integer 0 Number of cameras allowed 
nPOIsPerCamera Double 2 Number of POIs each camera may surveil at a time 
ObeyFixed Yes/No No If “Yes,” the fixed selections specified in table LOC must be followed 
Max_Time Long Integer 100 Maximum time (seconds) allowed to execute the run 
Max_Gap Double 0.0 Maximum optimality gap allowed (e.g., 0.05 means 5%) 
Gap Double  Actual gap achieved after the optimization (OUTPUT) 
E_Value Double  Overall expected damage, according to the objective of model 

MIN-CL1 (OUTPUT) 

Max_Val Double  Maximum individual damage, according to the objective of model MI-
CL2 (but already corrected for the use of logarithms) (OUTPUT) 

CPU_time Double  Computational time (seconds) spent in the optimization (OUTPUT) 

3. Other Inputs 

Two other inputs are required to execute a problem:  The database filename and 
the solver to be used.  These are specified as parameters in the main program 
(BETSS_C.mos) of the application, which is the point from where the XPRESS-MP 
application is executed. 

These parameters are called DBNAME and Use_CPLEX, respectively, and the 
excerpt in Figure 3 shows an example of how these can be set.  Specifically, the 
highlighted example shows that the database to be used is under the “case\” folder (from 
the incumbent location of the BETSS_C.mos file) and the filename is “Test_Large.mdb.”  
(Notice the extension “.mdb” should be omitted when specifying the file’s name.) 



 

Figure 3.  Specifying the database name and whether or not to use the CPLEX solver 

Similarly, the example in the figure indicates the CPLEX solver is not going to be 
used. (Notice the “=true” line is commented out).  Thus, all selected problems from the 
“case\Test_Large.mdb” database will be solved using the XPRESS-MP’s internal solver. 

4. Graphical Input and Output Environment 

Xpress-MP’s embedded graphical displays help visualize the problem and  
its solution. 

For example, Figure 4 shows a snapshot that maps out POIs and candidate 
locations for cameras.  For POIs we also see their value. By clicking on the “Visible” 
toggle, we would see a series of lines connecting candidate locations with those POIs that 
could be surveilled (with strictly positive probability of detection) from each location. 

After the model is run, the “Selected” toggle shows the chosen selected locations 
for the case, indicated in parenthesis as average (“Avg”) or min-max (“m-M”) 
optimization, along with the number of cameras available for the case.  The “Sel. 
Visible” (Selected Visible) toggle displays the assigned surveilled POIs from the  
selected locations. 
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Figure 4.  Preliminary display of locations (in blue) and points of interest (in red) 

D. EXAMPLES 

This section presents results for two hypothetical situations referred to as “Small 
example” and “Large example,” respectively; each has several variants or “scenarios.” 

1. Small Example 

The physical layout in this example (Figure 4) has ten potential camera locations 
and eight POIs.  Figure 5 shows a portion of the example with “visibility” links activated, 
along with the associated probabilities of detection.  For example, the probability of 
detecting POI “I4,” if surveilled from “L8,” is approximately 0.707. 
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Figure 5.  Small Example portion with line of sight (in yellow) and  
detection probabilities 

We run four scenarios for this example, as indicated in Figure 6.  The setting for 
the first scenario (indexed as “328” by the automated counter) seeks to minimize overall 
expected damage (model MIN-CL1).  We have three cameras available, and each camera 
can surveil an unlimited number of POIs simultaneously (indicated with a large limit of 
100 in the data).  The second scenario (“329”) is the same as “328” except that the 
optimization model used is MIN-CL2; that is, we seek to minimize the maximum damage 
at an individual POI.  Scenario “338” and “339” resemble the first two scenarios, 
respectively, except that we reduce the number of POIs to be surveilled from any one 
location to a maximum of three.  All scenarios are run for up to 100 seconds or when the 
optimality gap is zero. 
 

 

Figure 6.  Scenarios for Small Example 
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Results for the four scenarios are summarized in Figure 7.  We note that the final 
gaps are zero (i.e., the solutions presented are guaranteed to be optimal) and the 
computational times are under one second in all cases. 

The first two scenarios show that, when an unlimited number of POIs can be 
surveilled, both the overall-average and the worst-case optimal solutions are similar.  The 
optimal objective for MIN-CL1 yields an overall expected damage of 11.15 (scenario 
index “328”).  The worst POI from this model has an expected damage of 1.93.  
Coincidentally, this is the optimal objective function value obtained when MI-CL2 is used 
for that goal (scenario index “329”).  The fact that the converse does not occur (i.e., the 
overall expected damage in scenario “329” does match that of “328”) is a consequence of 
multiple optimal solutions to the min-max objective in MI-CL2.  Figure 8 shows that the 
only difference between the two solutions is that MI-CL2 does not surveil “I4” from 
“L1,” nor “I5” from “L8,” because that additional surveillance neither improves nor 
worsens the min-max objective. 

 

Figure 7.  Results for Small Contract scenarios 

The last two scenarios, which limit the number of POIs that can be surveilled 
from a single location, have reduced detection probabilities.  The optimal overall 
expected damage increases to 20.59, and the optimal worst-case individual damage 
increases to 3.40.  Figure 9 displays these two scenarios. 
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Figure 8.  Graphical solution to scenarios “328” (left) and “329” (right) 

Figure 9.  Graphical solution to scenarios “338” (left) and “339” (right) 

2. Large Example 

This setting has 30 candidate locations to surveil 100 POIs (Figure 10). 
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Figure 10.  Large Example with 30 locations and 100 POIs 

Figure 11 shows the scenarios.  Scenarios “351” through “354” are solved via 
MIN-CL1 with 5, 10, 15, and 20 cameras available, respectively, and a maximum of three 
POIs surveilled per camera.  Scenario “355” is the same as scenario “354” (20 cameras 
available), but is solved with MI-CL2, instead.  Scenarios “356” though “359” explore a 
20-camera case for a different number of POIs surveilled per camera.  (Notice that “358” 
is the same scenario as “354.”) 

 

Figure 11.  Scenarios for the Large Example 

Results for all scenarios are summarized in Figure 12.  As expected, there is a 
decrease in the overall damage as the number of available cameras increases (scenarios 
“351” through “354”).  We can improve the worst-case individual damage (from 8.0 to 
4.0 in this case) at the expense of increasing the overall expected damage from 156.14 to 
207.86.  Note that the solution to the min-max model MI-CL2 takes all of the allotted 
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time (five minutes), and stops with an optimality gap of 7.8%.  Finally, we observe an 
improvement in the solution, as the number of POIs that can be surveilled per  
location increases. 

 

Figure 12.  Results for Large Example scenarios 

Figures 13-17 present graphical displays for these solutions (but hide the POI 
names for the sake of clarity). 

Figure 13.  Graphical solution to scenarios “351” (left) and “352” (right) 
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Figure 14.  Graphical solution to scenarios “353” (left) and “354” (right) 

 

Figure 15.  Graphical solution to scenario “355” 
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Figure 16.  Graphical solution to scenarios “356” (left) and “357” (right) 

Figure 17.  Graphical solution to scenarios “358” (left) and “359” (right) 

E. FUTURE RESEARCH 

The research performed in this project can be extended to more accurately assess 
and incorporate the “information value” of a collection of POIs that may be assigned to 
one or more camera towers.  Our current implementation assumes a simple additive or 
separable value function that ignores “scheduling issues.”  But, a camera that is set to 
surveil a given collection of POIs may be programmed to focus on, zoom in on, and 
surveil each POI for a given amount of time before transitioning to another POI.  The 
corresponding surveillance and transition times affect the value of information collected 
(for example, the probability that an IED emplacement is detected), and should be part of 
the optimization process.  A related problem is how those settings may affect the 
efficiency of multiple cameras surveilling a single POI “A.”  For example, cameras C1 
and C2 might have line of sight to a given POI “A,” but camera C1 could spend its time 
more fruitfully observing other POIs; thus, only camera C2 should observe POI “A,” or 
C1 should be scheduled to scan this POI only occasionally. 
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Secondly, our current models also assume constant conditions.  However, 
day/night- or weather-related conditions may affect the probabilities of detection and 
could influence the optimal location of surveillance systems.  In addition, we currently 
assume that the surveillance systems are fixed, i.e., once deployed, they cannot be 
relocated.  By incorporating the dynamics of other surveillance systems (such as UAVs 
or the Eagle Eye mobile observation tower) in our analysis, it may be possible to provide 
better answers to problems with changing conditions. 

Future research may also perform simulations to:  (1) perform “what if” analysis 
for some key inputs which may be difficult to estimate by planners, such as POI values; 
and (2) analyze recommended locations under several potential terrorist behaviors.  For 
example, a “greedy” (or risk-averse) behavior may be simulated as a terrorist attempting 
to emplace an IED at a high-value POI, which is being heavily surveilled.  Other 
behaviors, from purely deterministic to random (including the selection of POI and time 
of day), can be integrated and may help assess, enhance, and validate the 
recommendations provided by the models described in this report. 
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