Publication:
Non-intrusive vibration monitoring in US Naval and US Coast Guard ships

Loading...
Thumbnail Image
Authors
Gerhard, Katherine Leigh
Subjects
Advisors
Leeb, Steven B.
Hale, Patrick
Schantz, Chris
Date of Issue
2013-06
Date
Publisher
Monterey California. Naval Postgraduate School
Language
en_US
Abstract
In 2011, the Laboratory for Electromagnetic and Electronic Systems proposed a new type of vibration monitoring systems, entitled Vibration Assessment Monitoring Point with Integrated Recovery of Energy or VAMPIRE, in their work entitled "VAMPIRE: accessing a life-blood of informatin for maintenance and damamge assessment (1). The proposed monitoring system includes a self-power harvesting accelerometer installed in motors on US Navy and US Coast Guard vessels used to monitor equipment vibration and diagnose the source of the high vibrations. Utilizing the observations and tools designed by the VAMPIRE project as a foundation, this thesis takes the LEES lab-designed CAPTCHA accelerometers to the US Navy and US Coast Guard fleets to test the lab-designed tool, collect ship equipment data, and verify the VAMPIRE concepts. The CAPTCHA's ability to monitor the vibrations of these systems could be used to immediately diagnose system casualties, aid in parts repair, and ultimately, become a tool to promote Condition-Based Maintenance (CBM). Measurements and experimentation were conducted on two USCG ventilation fans in the lab as well as onboard the USCGC SENECA (WMEC-906), USCGC BERTHOLF (WMSL 750), USCGC STRATTON (WMSL 752), USS MICHAEL MURPHY (DDG 112), USS INDEPENDENCE (LCS 2) and USS sAN dIEGO (LPD 22). Data was collected and analyzed using a MATLAB program developed to diagnose the types of vibrations seen in various experiments and observe high vibrations in the commissioned ships. The combined results of the CAPTCHA-recorded lab tests and ship testing corroborate the theories proposed in the VAMPIRE paper; however, additional studies cuold make the VAMPIRE proposal a robust solution to a fleet-wide vibration-induced maintenance problem.
Type
Thesis
Description
CIVINS (Civilian Institutions) Thesis document
Department
Engineering and Management
Organization
Massachusetts Institute of Technology
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections