NPS logo Naval Postgraduate School
Dudley Knox Library
        View Item 
        •   Calhoun Home
        • Faculty and Researchers
        • Faculty and Researchers Collection
        • View Item
        •   Calhoun Home
        • Faculty and Researchers
        • Faculty and Researchers Collection
        • View Item
        • How to search in Calhoun
        • My Accounts
        • Ask a Librarian
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of CalhounCollectionsThis Collection

        My Account

        LoginRegister

        Statistics

        Most Popular ItemsStatistics by CountryMost Popular Authors

        The evolution of mode-2 nonlinear internal waves over the northern Heng-Chun Ridge south of Taiwan

        Thumbnail
        View/Open
        IconArticle (12.45Mb)
        Download Record
        Download to EndNote/RefMan (RIS)
        Download to BibTex
        Author
        Reeder, D.B.
        Ramp, S.R.
        Yang, Y.J.
        Buijsman, M.C.
        Bahr, F.L.
        Date
        2015
        Metadata
        Show full item record
        Abstract
        Two research cruises were conducted from the R/V OCEAN RESEARCHER 3 during 05–16 August 2011 to study the generation and propagation of high-frequency nonlinear internal waves (NLIWs) over the northern Heng- Chun Ridge south of Taiwan. The primary study site was on top of a smaller ridge about 15 km wide by 400m high atop the primary ridge, with a sill depth of approximately 600 m. A single mooring was used in conjunction with shipboard observations to sample the temperature, salinity and velocity structure over the ridge. All the sensors observed a profusion of mode-2 NLIWs. Some of the waves were solitary, while others had as many as seven evenly spaced waves per packet. The waves all exhibited classic mode-2 velocity structure with a core near 150–200m and opposing velocities in the layers above and below. At least two and possibly three most common propagation directions emerged from the analysis, suggesting multiple generation sites near the eastern side of the ridge. The turbulent dissipation due to overturns in the wave cores was very high at order 10¯⁴–10¯³Wkg¯¹. The energy budget suggests that the waves cannot persist very far from the ridge and likely do not contribute to the South China Sea transbasin wave phenomenon.
        Description
        The article of record as published may be found at http://dx.doi.org/10.5194/npg-22-413-2015
        URI
        http://hdl.handle.net/10945/49531
        Collections
        • Faculty and Researchers Collection
        Feedback

        411 Dyer Rd. Bldg. 339
        Monterey, CA 93943

         

        circdesk@nps.edu
        (831) 656-2947
        DSN 756-2947

        Start Your Research

        • Research Guides
        • How to Cite
        • Search Basics
        • Ask a Librarian
        • Library Liaisons
        • Graduate Writing Center
        • Thesis Processing Office
        • Statistics, Maps & More
        • Copyright at NPS

        Find & Download

        • Databases List
        • Articles, Books & More
        • NPS Theses
        • NPS Faculty Publications: Calhoun
        • Journal Titles
        • Course Reserves

        Use the Library

        • My Accounts
        • Request Article or Book
        • Borrow, Renew, Return
        • Remote Access
        • Workshops & Tours
        • For Faculty & Researchers
        • For International Students
        • For Alumni
        • Print, Copy, Scan, Fax
        • Rooms & Study Spaces
        • Floor Map
        • Computers & Software
        • Adapters, Lockers & More

        Collections

        • NPS Archive: Calhoun
        • Restricted Resources
        • Special Collections & Archives
        • Federal Depository
        • Homeland Security Digital Library

        About

        • Hours
        • Library Staff
        • About Us
        • Visit Us

        NPS-Licensed Resources - Terms & Conditions

        Copyright Notice

         
         

          Federal Depository Library  

        NPS Home Privacy Policy Copyright Accessibility Contact Webmaster